This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

PEN I Problems, 20

Find all integer solutions of the equation \[\left\lfloor \frac{x}{1!}\right\rfloor+\left\lfloor \frac{x}{2!}\right\rfloor+\cdots+\left\lfloor \frac{x}{10!}\right\rfloor =1001.\]

2001 India Regional Mathematical Olympiad, 3

Find the number of positive integers $x$ such that \[ \left[ \frac{x}{99} \right] = \left[ \frac{x}{101} \right] . \]

2014 JBMO Shortlist, 1

Solve in positive real numbers: $n+ \lfloor \sqrt{n} \rfloor+\lfloor \sqrt[3]{n} \rfloor=2014$

2004 China Team Selection Test, 2

Let u be a fixed positive integer. Prove that the equation $n! = u^{\alpha} - u^{\beta}$ has a finite number of solutions $(n, \alpha, \beta).$

2010 Canada National Olympiad, 3

Three speed skaters have a friendly "race" on a skating oval. They all start from the same point and skate in the same direction, but with different speeds that they maintain throughout the race. The slowest skater does $1$ lap per minute, the fastest one does $3.14$ laps per minute, and the middle one does $L$ laps a minute for some $1 < L < 3.14$. The race ends at the moment when all three skaters again come together to the same point on the oval (which may differ from the starting point.) Determine the number of different choices for $L$ such that exactly $117$ passings occur before the end of the race. Note: A passing is defined as when one skater passes another one. The beginning and the end of the race when all three skaters are together are not counted as passings.

1997 Canada National Olympiad, 3

Prove that $\frac{1}{1999}< \prod_{i=1}^{999}{\frac{2i-1}{2i}}<\frac{1}{44}$.

1995 Brazil National Olympiad, 6

$X$ has $n$ elements. $F$ is a family of subsets of $X$ each with three elements, such that any two of the subsets have at most one element in common. Show that there is a subset of $X$ with at least $\sqrt{2n}$ members which does not contain any members of $F$.

2009 Tuymaada Olympiad, 4

Determine the maximum number $ h$ satisfying the following condition: for every $ a\in [0,h]$ and every polynomial $ P(x)$ of degree 99 such that $ P(0)\equal{}P(1)\equal{}0$, there exist $ x_1,x_2\in [0,1]$ such that $ P(x_1)\equal{}P(x_2)$ and $ x_2\minus{}x_1\equal{}a$. [i]Proposed by F. Petrov, D. Rostovsky, A. Khrabrov[/i]

2014 ELMO Shortlist, 4

Let $r$ and $b$ be positive integers. The game of [i]Monis[/i], a variant of Tetris, consists of a single column of red and blue blocks. If two blocks of the same color ever touch each other, they both vanish immediately. A red block falls onto the top of the column exactly once every $r$ years, while a blue block falls exactly once every $b$ years. (a) Suppose that $r$ and $b$ are odd, and moreover the cycles are offset in such a way that no two blocks ever fall at exactly the same time. Consider a period of $rb$ years in which the column is initially empty. Determine, in terms of $r$ and $b$, the number of blocks in the column at the end. (b) Now suppose $r$ and $b$ are relatively prime and $r+b$ is odd. At time $t=0$, the column is initially empty. Suppose a red block falls at times $t = r, 2r, \dots, (b-1)r$ years, while a blue block falls at times $t = b, 2b, \dots, (r-1)b$ years. Prove that at time $t=rb$, the number of blocks in the column is $\left\lvert 1+2(r-1)(b+r)-8S \right\rvert$, where \[ S = \left\lfloor \frac{2r}{r+b} \right\rfloor + \left\lfloor \frac{4r}{r+b} \right\rfloor + ... + \left\lfloor \frac{(r+b-1)r}{r+b} \right\rfloor . \] [i]Proposed by Sammy Luo[/i]

2020 Taiwan TST Round 3, 2

Let $H = \{ \lfloor i\sqrt{2}\rfloor : i \in \mathbb Z_{>0}\} = \{1,2,4,5,7,\dots \}$ and let $n$ be a positive integer. Prove that there exists a constant $C$ such that, if $A\subseteq \{1,2,\dots, n\}$ satisfies $|A| \ge C\sqrt{n}$, then there exist $a,b\in A$ such that $a-b\in H$. (Here $\mathbb Z_{>0}$ is the set of positive integers, and $\lfloor z\rfloor$ denotes the greatest integer less than or equal to $z$.)

2002 AIME Problems, 8

Find the least positive integer $k$ for which the equation $\lfloor \frac{2002}{n}\rfloor = k$ has no integer solutions for $n.$ (The notation $\lfloor x \rfloor$ means the greatest integer less than or equal to $x.$)

2013 Saudi Arabia BMO TST, 3

Solve the following equation where $x$ is a real number: $\lfloor x^2 \rfloor -10\lfloor x \rfloor + 24 = 0$

2017 AMC 12/AHSME, 20

Real numbers $x$ and $y$ are chosen independently and uniformly at random from the interval $(0,1)$. What is the probability that $\lfloor \log_2{x} \rfloor=\lfloor \log_2{y} \rfloor$, where $\lfloor r \rfloor$ denotes the greatest integer less than or equal to the real number $r$? $\textbf{(A)}\ \frac{1}{8}\qquad\textbf{(B)}\ \frac{1}{6}\qquad\textbf{(C)}\ \frac{1}{4}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ \frac{1}{2}$

2016 Belarus Team Selection Test, 1

Determine all positive integers $M$ such that the sequence $a_0, a_1, a_2, \cdots$ defined by \[ a_0 = M + \frac{1}{2} \qquad \textrm{and} \qquad a_{k+1} = a_k\lfloor a_k \rfloor \quad \textrm{for} \, k = 0, 1, 2, \cdots \] contains at least one integer term.

1976 IMO Longlists, 13

A sequence $(u_{n})$ is defined by \[ u_{0}=2 \quad u_{1}=\frac{5}{2}, u_{n+1}=u_{n}(u_{n-1}^{2}-2)-u_{1} \quad \textnormal{for } n=1,\ldots \] Prove that for any positive integer $n$ we have \[ [u_{n}]=2^{\frac{(2^{n}-(-1)^{n})}{3}} \](where $[x]$ denotes the smallest integer $\leq x)$

2012 Portugal MO, 3

Isabel wants to partition the set $\mathbb{N}$ of the positive integers into $n$ disjoint sets $A_{1}, A_{2}, \ldots, A_{n}$. Suppose that for each $i$ with $1\leq i\leq n$, given any positive integers $r, s\in A_{i}$ with $r\neq s$, we have $r+s\in A_{i}$. If $|A_{j}|=1$ for some $j$, find the greatest positive integer that may belong to $A_{j}$.

2009 Indonesia TST, 3

Let $ n \ge 2009$ be an integer and define the set: \[ S \equal{} \{2^x|7 \le x \le n, x \in \mathbb{N}\}. \] Let $ A$ be a subset of $ S$ and the sum of last three digits of each element of $ A$ is $ 8$. Let $ n(X)$ be the number of elements of $ X$. Prove that \[ \frac {28}{2009} < \frac {n(A)}{n(S)} < \frac {82}{2009}. \]

2000 AIME Problems, 6

One base of a trapezoid is 100 units longer than the other base. The segment that joins the midpoints of the legs divides the trapezoid into two regions whose areas are in the ratio $2: 3.$ Let $x$ be the length of the segment joining the legs of the trapezoid that is parallel to the bases and that divides the trapezoid into two regions of equal area. Find the greatest integer that does not exceed $x^2/100.$

PEN M Problems, 3

Let $f(n)=n+\lfloor \sqrt{n}\rfloor$. Prove that, for every positive integer $m$, the sequence \[m, f(m), f(f(m)), f(f(f(m))), \cdots\] contains at least one square of an integer.

2019 IMO Shortlist, N6

Let $H = \{ \lfloor i\sqrt{2}\rfloor : i \in \mathbb Z_{>0}\} = \{1,2,4,5,7,\dots \}$ and let $n$ be a positive integer. Prove that there exists a constant $C$ such that, if $A\subseteq \{1,2,\dots, n\}$ satisfies $|A| \ge C\sqrt{n}$, then there exist $a,b\in A$ such that $a-b\in H$. (Here $\mathbb Z_{>0}$ is the set of positive integers, and $\lfloor z\rfloor$ denotes the greatest integer less than or equal to $z$.)

2019 Hong Kong TST, 3

Find an integral solution of the equation \[ \left \lfloor \frac{x}{1!} \right \rfloor + \left \lfloor \frac{x}{2!} \right \rfloor + \left \lfloor \frac{x}{3!} \right \rfloor + \dots + \left \lfloor \frac{x}{10!} \right \rfloor = 2019. \] (Note $\lfloor u \rfloor$ stands for the greatest integer less than or equal to $u$.)

2014 USAMTS Problems, 3:

Let $a_1,a_2,a_3,...$ be a sequence of positive real numbers such that: (i) For all positive integers $m,n$, we have $a_{mn}=a_ma_n$ (ii) There exists a positive real number $B$ such that for all positive integers $m,n$ with $m<n$, we have $a_m < Ba_n$ Find all possible values of $\log_{2015}(a_{2015}) - \log_{2014}(a_{2014})$

2014 Online Math Open Problems, 3

Let $B = (20, 14)$ and $C = (18, 0)$ be two points in the plane. For every line $\ell$ passing through $B$, we color red the foot of the perpendicular from $C$ to $\ell$. The set of red points enclose a bounded region of area $\mathcal{A}$. Find $\lfloor \mathcal{A} \rfloor$ (that is, find the greatest integer not exceeding $\mathcal A$). [i]Proposed by Yang Liu[/i]

2003 Romania National Olympiad, 3

For every positive integer $ n$ consider \[ A_n\equal{}\sqrt{49n^2\plus{}0,35n}. \] (a) Find the first three digits after decimal point of $ A_1$. (b) Prove that the first three digits after decimal point of $ A_n$ and $ A_1$ are the same, for every $ n$.

2000 Taiwan National Olympiad, 2

Let $n$ be a positive integer and $A=\{ 1,2,\ldots ,n\}$. A subset of $A$ is said to be connected if it consists of one element or several consecutive elements. Determine the maximum $k$ for which there exist $k$ distinct subsets of $A$ such that the intersection of any two of them is connected.