Found problems: 1187
2001 Pan African, 2
Let $n$ be a positive integer. A child builds a wall along a line with $n$ identical cubes. He lays the first cube on the line and at each subsequent step, he lays the next cube either on the ground or on the top of another cube, so that it has a common face with the previous one. How many such distinct walls exist?
2001 China Western Mathematical Olympiad, 1
Find all real numbers $ x$ such that $ \lfloor x^3 \rfloor \equal{} 4x \plus{} 3$.
1989 APMO, 4
Let $S$ be a set consisting of $m$ pairs $(a,b)$ of positive integers with the property that $1 \leq a < b \leq n$. Show that there are at least
\[ 4m \cdot \dfrac{(m - \dfrac{n^2}{4})}{3n} \]
triples $(a,b,c)$ such that $(a,b)$, $(a,c)$, and $(b,c)$ belong to $S$.
2016 Silk Road, 3
Given natural numbers $a,b$ and function $f: \mathbb{N} \to \mathbb{N} $ such that for any natural number $n, f\left( n+a \right)$ is divided by $f\left( {\left[ {\sqrt n } \right] + b} \right)$. Prove that for any natural $n$ exist $n$ pairwise distinct and pairwise relatively prime natural numbers ${{a}_{1}}$, ${{a}_{2}}$, $\ldots$, ${{a}_{n}}$ such that the number $f\left( {{a}_{i+1}} \right)$ is divided by $f\left( {{a}_{i}} \right)$ for each $i=1,2, \dots ,n-1$ .
(Here $[x]$ is the integer part of number $x$, that is, the largest integer not exceeding $x$.)
2019 Gulf Math Olympiad, 4
Consider the sequence $(a_n)_{n\ge 1}$ defined by $a_n=n$ for $n\in \{1,2,3.4,5,6\}$, and for $n \ge 7$: $$a_n={\lfloor}\frac{a_1+a_2+...+a_{n-1}}{2}{\rfloor}$$
where ${\lfloor}x{\rfloor}$ is the greatest integer less than or equal to $x$. For example : ${\lfloor}2.4{\rfloor} = 2, {\lfloor}3{\rfloor} = 3$ and ${\lfloor}\pi {\rfloor}= 3$.
For all integers $n \ge 2$, let $S_n = \{a_1,a_1,...,a_n\}- \{r_n\}$ where $r_n$ is the remainder when $a_1 + a_2 + ... + a_n$ is divided by $3$. The minus $-$ denotes the ''[i]remove it if it is there[/i]'' notation. For example : $S_4 = {2,3,4}$ because $r_4= 1$ so $1$ is removed from $\{1,2,3,4\}$. However $S_5= \{1,2,3,4,5\}$ betawe $r_5 = 0$ and $0$ is not in the set $\{1,2,3,4,5\}$.
1. Determine $S_7,S_8,S_9$ and $S_{10}$.
2. We say that a set $S_n$ for $n\ge 6$ is well-balanced if it can be partitioned into three pairwise disjoint subsets with equal sum. For example : $S_6 = \{1,2,3,4,5,6\} =\{1,6\}\cup \{2,5\}\cup \{3,4\}$ and $1 +6 = 2 + 5 = 3 + 4$. Prove that $S_7,S_8,S_9$ and $S_{10}$ are well-balanced .
3. Is the set $S_{2019}$ well-balanced? Justify your answer.
2023 Romania National Olympiad, 4
Let $r$ and $s$ be real numbers in the interval $[1, \infty)$ such that for all positive integers $a$ and $b$ with $a \mid b \implies \left\lfloor ar \right\rfloor$ divides $\left\lfloor bs \right\rfloor$.
a) Prove that $\frac{s}{r}$ is a natural number.
b) Show that both $r$ and $s$ are natural numbers.
Here, $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to $x$.
PEN N Problems, 11
The infinite sequence of 2's and 3's \[\begin{array}{l}2,3,3,2,3,3,3,2,3,3,3,2,3,3,2,3,3, \\ 3,2,3,3,3,2,3,3,3,2,3,3,2,3,3,3,2,\cdots \end{array}\] has the property that, if one forms a second sequence that records the number of 3's between successive 2's, the result is identical to the given sequence. Show that there exists a real number $r$ such that, for any $n$, the $n$th term of the sequence is 2 if and only if $n = 1+\lfloor rm \rfloor$ for some nonnegative integer $m$.
2024 Iberoamerican, 6
Determine all infinite sets $A$ of positive integers with the following propety:
If $a,b \in A$ and $a \ge b$ then $\left\lfloor \frac{a}{b} \right\rfloor \in A$
2011 Kosovo National Mathematical Olympiad, 2
Find all solutions to the equation:
\[ \left(\left\lfloor x+\frac{7}{3} \right\rfloor \right)^2-\left\lfloor x-\frac{9}{4} \right\rfloor = 16 \]
2001 All-Russian Olympiad, 4
Participants to an olympiad worked on $n$ problems. Each problem was worth a [color=#FF0000]positive [/color]integer number of points, determined by the jury. A contestant gets $0$ points for a wrong answer, and all points for a correct answer to a problem. It turned out after the olympiad that the jury could impose worths of the problems, so as to obtain any (strict) final ranking of the contestants. Find the greatest possible number of contestants.
2020 Indonesia MO, 7
Determine all real-coefficient polynomials $P(x)$ such that
\[ P(\lfloor x \rfloor) = \lfloor P(x) \rfloor \]for every real numbers $x$.
1999 Italy TST, 4
Let $X$ be an $n$-element set and let $A_1,\ldots ,A_m$ be subsets of $X$ such that
i) $|A_i|=3$ for each $i=1,\ldots ,m$.
ii) $|A_i\cap A_j|\le 1$ for any two distinct indices $i,j$.
Show that there exists a subset of $X$ with at least $\lfloor\sqrt{2n}\rfloor$ elements which does not contain any of the $A_i$’s.
2007 ITest, 38
Find the largest positive integer that is equal to the cube of the sum of its digits.
1993 India National Olympiad, 5
Show that there is a natural number $n$ such that $n!$ when written in decimal notation ends exactly in 1993 zeros.
2009 Princeton University Math Competition, 5
Lines $l$ and $m$ are perpendicular. Line $l$ partitions a convex polygon into two parts of equal area, and partitions the projection of the polygon onto $m$ into two line segments of length $a$ and $b$ respectively. Determine the maximum value of $\left\lfloor \frac{1000a}{b} \right\rfloor$. (The floor notation $\lfloor x \rfloor$ denotes largest integer not exceeding $x$)
1998 Harvard-MIT Mathematics Tournament, 5
How many positive integers less than $1998$ are relatively prime to $1547$? (Two integers are relatively prime if they have no common factors besides 1.)
PEN P Problems, 27
Determine, with proof, the largest number which is the product of positive integers whose sum is $1976$.
2008 Harvard-MIT Mathematics Tournament, 10
Determine the number of $ 8$-tuples of nonnegative integers $ (a_1,a_2,a_3,a_4,b_1,b_2,b_3,b_4)$ satisfying $ 0\le a_k\le k$, for each $ k \equal{} 1,2,3,4$, and $ a_1 \plus{} a_2 \plus{} a_3 \plus{} a_4 \plus{} 2b_1 \plus{} 3b_2 \plus{} 4b_3 \plus{} 5b_4 \equal{} 19$.
2003 AMC 10, 15
What is the probability that an integer in the set $ \{1,2,3,\ldots,100\}$ is divisible by $ 2$ and not divisible by $ 3$?
$ \textbf{(A)}\ \frac{1}{6} \qquad
\textbf{(B)}\ \frac{33}{100} \qquad
\textbf{(C)}\ \frac{17}{50} \qquad
\textbf{(D)}\ \frac{1}{2} \qquad
\textbf{(E)}\ \frac{18}{25}$
2014 Iran MO (3rd Round), 6
$P$ is a monic polynomial of odd degree greater than one such that there exists a function $f : \mathbb{R} \rightarrow \mathbb{N}$ such that for each $x \in \mathbb{R}$ ,\[f(P(x))=P(f(x))\]
(a) Prove that there are a finite number of natural numbers in range of $f$.
(b) Prove that if $f$ is not constant then the equation $P(x)-x=0$ has at least two real solutions.
(c) For each natural $n>1$ prove that there exists a function $f : \mathbb{R} \rightarrow \mathbb{N}$ and a monic polynomial of odd degree greater than one $P$ such that for each $x \in \mathbb{R}$ ,\[f(P(x))=P(f(x))\] and range of $f$ contains exactly $n$ different numbers.
Time allowed for this problem was 105 minutes.
2010 China Team Selection Test, 3
Let $n_1,n_2, \cdots, n_{26}$ be pairwise distinct positive integers satisfying
(1) for each $n_i$, its digits belong to the set $\{1,2\}$;
(2) for each $i,j$, $n_i$ can't be obtained from $n_j$ by adding some digits on the right.
Find the smallest possible value of $\sum_{i=1}^{26} S(n_i)$, where $S(m)$ denotes the sum of all digits of a positive integer $m$.
PEN I Problems, 3
Prove that for any positive integer $n$, \[\left\lfloor \frac{n+1}{2}\right\rfloor+\left\lfloor \frac{n+2}{4}\right\rfloor+\left\lfloor \frac{n+4}{8}\right\rfloor+\left\lfloor \frac{n+8}{16}\right\rfloor+\cdots = n.\]
2009 International Zhautykov Olympiad, 3
In a checked $ 17\times 17$ table, $ n$ squares are colored in black. We call a line any of rows, columns, or any of two diagonals of the table. In one step, if at least $ 6$ of the squares in some line are black, then one can paint all the squares of this line in black.
Find the minimal value of $ n$ such that for some initial arrangement of $ n$ black squares one can paint all squares of the table in black in some steps.
2016 Serbia National Math Olympiad, 2
Let $n $ be a positive integer. Let $f $ be a function from nonnegative integers to themselves. Let $f (0,i)=f (i,0)=0$, $f (1, 1)=n $, and $ f(i, j)= [\frac {f(i-1,j)}{2}]+ [\frac {f(i, j-1)}{2}] $ for positive integers $i, j$ such that $i*j>1$. Find the number of pairs $(i,j) $ such that $f (i, j) $ is an odd number.( $[x]$ is the floor function).
2002 AMC 10, 22
In how many zeroes does the number $\dfrac{2002!}{(1001!)^2}$ end?
$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }200\qquad\textbf{(E) }400$