This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

2021 Durer Math Competition Finals, 4

Indians find those sequences of non-negative real numbers $x_0, x_1,...$ [i]mystical [/i]t hat satisfy $x_0 < 2021$, $x_{i+1} = \lfloor x_i \rfloor \{x_i\}$ for every $i \ge 0$, furthermore the sequence contains an integer different from $0$. How many sequences are mystical according to the Indians?

2006 AMC 12/AHSME, 20

Let $ x$ be chosen at random from the interval $ (0,1)$. What is the probability that \[ \lfloor\log_{10}4x\rfloor \minus{} \lfloor\log_{10}x\rfloor \equal{} 0? \]Here $ \lfloor x\rfloor$ denotes the greatest integer that is less than or equal to $ x$. $ \textbf{(A) } \frac 18 \qquad \textbf{(B) } \frac 3{20} \qquad \textbf{(C) } \frac 16 \qquad \textbf{(D) } \frac 15 \qquad \textbf{(E) } \frac 14$

2013 IMAC Arhimede, 4

Let $p,n$ be positive integers, such that $p$ is prime and $p <n$. If $p$ divides $n + 1$ and $ \left(\left[\frac{n}{p}\right], (p-1)!\right) = 1$, then prove that $p\cdot \left[\frac{n}{p}\right]^2$ divides ${n \choose p} -\left[\frac{n}{p}\right]$ . (Here $[x]$ represents the integer part of the real number $x$.)

1972 Bundeswettbewerb Mathematik, 4

Which natural numbers cannot be presented in that way: $[n+\sqrt{n}+\frac{1}{2}]$, $n\in\mathbb{N}$ $[y]$ is the greatest integer function.

1976 Dutch Mathematical Olympiad, 5

$f(k) = k + \left[ \frac{n}{k}\right ] $,$k \in \{1,2,..., n\}$, $k_0 =\left[ \sqrt{n} \right] + 1$. Prove that $f(k_0) < f(k)$ if $k \in \{1,2,..., n\}$

1991 IMTS, 1

For every positive integer $n$, form the number $n/s(n)$, where $s(n)$ is the sum of digits of $n$ in base 10. Determine the minimum value of $n/s(n)$ in each of the following cases: (i) $10 \leq n \leq 99$ (ii) $100 \leq n \leq 999$ (iii) $1000 \leq n \leq 9999$ (iv) $10000 \leq n \leq 99999$

2008 AMC 12/AHSME, 23

The sum of the base-$ 10$ logarithms of the divisors of $ 10^n$ is $ 792$. What is $ n$? $ \textbf{(A)}\ 11\qquad \textbf{(B)}\ 12\qquad \textbf{(C)}\ 13\qquad \textbf{(D)}\ 14\qquad \textbf{(E)}\ 15$

1973 Miklós Schweitzer, 3

Find a constant $ c > 1$ with the property that, for arbitrary positive integers $ n$ and $ k$ such that $ n>c^k$, the number of distinct prime factors of $ \binom{n}{k}$ is at least $ k$. [i]P. Erdos[/i]

2004 India IMO Training Camp, 2

Find all primes $p \geq 3$ with the following property: for any prime $q<p$, the number \[ p - \Big\lfloor \frac{p}{q} \Big\rfloor q \] is squarefree (i.e. is not divisible by the square of a prime).

2014 Online Math Open Problems, 22

Find the smallest positive integer $c$ for which the following statement holds: Let $k$ and $n$ be positive integers. Suppose there exist pairwise distinct subsets $S_1$, $S_2$, $\dots$, $S_{2k}$ of $\{1, 2, \dots, n\}$, such that $S_i \cap S_j \neq \varnothing$ and $S_i \cap S_{j+k} \neq \varnothing$ for all $1 \le i,j \le k$. Then $1000k \le c \cdot 2^n$. [i]Proposed by Yang Liu[/i]

2004 China Team Selection Test, 2

Let u be a fixed positive integer. Prove that the equation $n! = u^{\alpha} - u^{\beta}$ has a finite number of solutions $(n, \alpha, \beta).$

2007 Harvard-MIT Mathematics Tournament, 1

Compute \[\left\lfloor \dfrac{2007!+2004!}{2006!+2005!}\right\rfloor.\] (Note that $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$.)

II Soros Olympiad 1995 - 96 (Russia), 10.4

Solve the system of equations $$\begin{cases} x^2+ [y]=10 \\ y^2+[x]=13 \end{cases}$$ ($[x]$ is the integer part of $x$, $[x]$ is equal to the largest integer not exceeding $x$. For example, $[3,33] = 3$, $[2] = 2$, $[- 3.01] = -4$).

1986 Federal Competition For Advanced Students, P2, 2

For $ s,t \in \mathbb{N}$, consider the set $ M\equal{}\{ (x,y) \in \mathbb{N} ^2 | 1 \le x \le s, 1 \le y \le t \}$. Find the number of rhombi with the vertices in $ M$ and the diagonals parallel to the coordinate axes.

1978 IMO Longlists, 27

Determine the sixth number after the decimal point in the number $(\sqrt{1978} +\lfloor\sqrt{1978}\rfloor)^{20}$

2014 PUMaC Number Theory A, 7

Find the number of positive integers $n \le 2014$ such that there exists integer $x$ that satisfies the condition that $\frac{x+n}{x-n}$ is an odd perfect square.

2011 Iran MO (3rd Round), 1

(a) We say that a hyperplane $H$ that is given with this equation \[H=\{(x_1,\dots,x_n)\in \mathbb R^n \mid a_1x_1+ \dots +a_nx_n=b\}\] ($a=(a_1,\dots,a_n)\in \mathbb R^n$ and $b\in \mathbb R$ constant) bisects the finite set $A\subseteq \mathbb R^n$ if each of the two halfspaces $H^+=\{(x_1,\dots,x_n)\in \mathbb R^n \mid a_1x_1+ \dots +a_nx_n>b\}$ and $H^-=\{(x_1,\dots,x_n)\in \mathbb R^n \mid a_1x_1+ \dots +a_nx_n<b\}$ have at most $\lfloor \tfrac{|A|}{2}\rfloor$ points of $A$. Suppose that $A_1,\dots,A_n$ are finite subsets of $\mathbb R^n$. Prove that there exists a hyperplane $H$ in $\mathbb R^n$ that bisects all of them at the same time. (b) Suppose that the points in $B=A_1\cup \dots \cup A_n$ are in general position. Prove that there exists a hyperplane $H$ such that $H^+\cap A_i$ and $H^-\cap A_i$ contain exactly $\lfloor \tfrac{|A_i|}{2}\rfloor$ points of $A_i$. (c) With the help of part (b), show that the following theorem is true: Two robbers want to divide an open necklace that has $d$ different kinds of stones, where the number of stones of each kind is even, such that each of the robbers receive the same number of stones of each kind. Show that the two robbers can accomplish this by cutting the necklace in at most $d$ places.

1986 AMC 12/AHSME, 7

The sum of the greatest integer less than or equal to $x$ and the least integer greater than or equal to $x$ is $5$. The solution set for $x$ is $ \textbf{(A)}\ \Big\{\frac{5}{2}\Big\}\qquad\textbf{(B)}\ \big\{x\ |\ 2 \le x \le 3\big\}\qquad\textbf{(C)}\ \big\{x\ |\ 2\le x < 3\big\}\qquad \\ \textbf{(D)}\ \Big\{x\ |\ 2 < x \le 3\Big\}\qquad\textbf{(E)}\ \Big\{x\ |\ 2 < x < 3\Big\} $

2014 Contests, 2

Let $x_1,x_2,\ldots,x_n $ be real numbers, where $n\ge 2$ is a given integer, and let $\lfloor{x_1}\rfloor,\lfloor{x_2}\rfloor,\ldots,\lfloor{x_n}\rfloor $ be a permutation of $1,2,\ldots,n$. Find the maximum and minimum of $\sum\limits_{i=1}^{n-1}\lfloor{x_{i+1}-x_i}\rfloor$ (here $\lfloor x\rfloor $ is the largest integer not greater than $x$).

2020 Princeton University Math Competition, 15

Suppose that f is a function $f : R_{\ge 0} \to R$ so that for all $x, y \in R_{\ge 0}$ (nonnegative reals) we have that $$f(x)+f(y) = f(x+y+xy)+f(x)f(y).$$ Given that $f\left(\frac{3}{5} \right) = \frac12$ and$ f(1) = 3$, determine $$\lfloor \log_2 (-f(10^{2021} - 1)) \rfloor.$$

2020 Kazakhstan National Olympiad, 1

There are $n$ lamps and $k$ switches in a room. Initially, each lamp is either turned on or turned off. Each lamp is connected by a wire with $2020$ switches. Switching a switch changes the state of a lamp, that is connected to it, to the opposite state. It is known that one can switch the switches so that all lamps will be turned on. Prove, that it is possible to achieve the same result by switching the switches no more than $ \left \lfloor \dfrac{k}{2} \right \rfloor$ times. [i]Proposed by T. Zimanov[/i]

1999 Canada National Olympiad, 1

Find all real solutions to the equation $4x^2 - 40 \lfloor x \rfloor + 51 = 0$.

2012 Romania Team Selection Test, 3

Find the maximum possible number of kings on a $12\times 12$ chess table so that each king attacks exactly one of the other kings (a king attacks only the squares that have a common point with the square he sits on).

2018 Malaysia National Olympiad, A5

Find the positive integer $n$ that satisfi es the equation $$n^2 - \lfloor \sqrt{n} \rfloor = 2018$$

PEN O Problems, 53

Suppose that the set $M=\{1,2,\cdots,n\}$ is split into $t$ disjoint subsets $M_{1}$, $\cdots$, $M_{t}$ where the cardinality of $M_i$ is $m_{i}$, and $m_{i} \ge m_{i+1}$, for $i=1,\cdots,t-1$. Show that if $n>t!\cdot e$ then at least one class $M_z$ contains three elements $x_{i}$, $x_{j}$, $x_{k}$ with the property that $x_{i}-x_{j}=x_{k}$.