This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2016 Taiwan TST Round 1, 3

Let $\mathbb{Z}^+$ denote the set of all positive integers. Find all surjective functions $f:\mathbb{Z}^+ \times \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ that satisfy all of the following conditions: for all $a,b,c \in \mathbb{Z}^+$, (i)$f(a,b) \leq a+b$; (ii)$f(a,f(b,c))=f(f(a,b),c)$ (iii)Both $\binom{f(a,b)}{a}$ and $\binom{f(a,b)}{b}$ are odd numbers.(where $\binom{n}{k}$ denotes the binomial coefficients)

2011 APMO, 5

Tags: function , algebra
Determine all functions $f:\mathbb{R}\to\mathbb{R}$, where $\mathbb{R}$ is the set of all real numbers, satisfying the following two conditions: 1) There exists a real number $M$ such that for every real number $x,f(x)<M$ is satisfied. 2) For every pair of real numbers $x$ and $y$, \[ f(xf(y))+yf(x)=xf(y)+f(xy)\] is satisfied.

2004 Nicolae Coculescu, 4

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a continuous function having a primitive $ F $ having the property that $ f-F $ is positive globally. Calculate $ \lim_{x\to\infty } f(x) . $ [i]Florian Dumitrel[/i]

2014 Iran Team Selection Test, 5

$n$ is a natural number. for every positive real numbers $x_{1},x_{2},...,x_{n+1}$ such that $x_{1}x_{2}...x_{n+1}=1$ prove that: $\sqrt[x_{1}]{n}+...+\sqrt[x_{n+1}]{n} \geq n^{\sqrt[n]{x_{1}}}+...+n^{\sqrt[n]{x_{n+1}}}$

2020 Turkey Team Selection Test, 4

Let $Z^+$ be positive integers set. $f:\mathbb{Z^+}\to\mathbb{Z^+}$ is a function and we show $ f \circ f \circ ...\circ f $ with $f_l$ for all $l\in \mathbb{Z^+}$ where $f$ is repeated $l$ times. Find all $f:\mathbb{Z^+}\to\mathbb{Z^+}$ functions such that $$ (n-1)^{2020}< \prod _{l=1}^{2020} {f_l}(n)< n^{2020}+n^{2019} $$ for all $n\in \mathbb{Z^+}$

2005 IMC, 2

Let $f: \mathbb{R}\to\mathbb{R}$ be a function such that $(f(x))^{n}$ is a polynomial for every integer $n\geq 2$. Is $f$ also a polynomial?

2015 Iran MO (3rd round), 2

Tags: algebra , function
Prove that there are no functions $f,g:\mathbb{R}\rightarrow \mathbb{R}$ such that $\forall x,y\in \mathbb{R}:$ $ f(x^2+g(y)) -f(x^2)+g(y)-g(x) \leq 2y$ and $f(x)\geq x^2$. [i]Proposed by Mohammad Ahmadi[/i]

2023 Turkey Team Selection Test, 7

Let us call an integer sequence $\{ a_1,a_2, \dots \}$ nice if there exist a function $f: \mathbb{Z^+} \to \mathbb{Z^+} $ such that $$a_i \equiv a_j \pmod{n} \iff i\equiv j \pmod{f(n)}$$ for all $i,j,n \in \mathbb{Z^+}$. Find all nice sequences.

2015 Middle European Mathematical Olympiad, 1

Tags: function , algebra
Find all surjective functions $f:\mathbb{N}\to\mathbb{N}$ such that for all positive integers $a$ and $b$, exactly one of the following equations is true: \begin{align*} f(a)&=f(b), <br /> \\ f(a+b)&=\min\{f(a),f(b)\}. \end{align*} [i]Remarks:[/i] $\mathbb{N}$ denotes the set of all positive integers. A function $f:X\to Y$ is said to be surjective if for every $y\in Y$ there exists $x\in X$ such that $f(x)=y$.

2007 Germany Team Selection Test, 2

Determine all functions $ f: \mathbb{R}^\plus{} \mapsto \mathbb{R}^\plus{}$ which satisfy \[ f \left(\frac {f(x)}{yf(x) \plus{} 1}\right) \equal{} \frac {x}{xf(y)\plus{}1} \quad \forall x,y > 0\]

2006 CentroAmerican, 3

For every natural number $n$ we define \[f(n)=\left\lfloor n+\sqrt{n}+\frac{1}{2}\right\rfloor\] Show that for every integer $k \geq 1$ the equation \[f(f(n))-f(n)=k\] has exactly $2k-1$ solutions.

2014 Dutch BxMO/EGMO TST, 2

Tags: function , algebra
Find all functions $f:\mathbb{R}\backslash\{0\}\rightarrow\mathbb{R}$ for which $xf(xy) + f(-y) = xf(x)$ for all non-zero real numbers $x, y$.

2016 SGMO, Q6

Let $f_1,f_2,\ldots $ be a sequence of non-increasing functions from the naturals to the naturals. Show there exists $i < j$ such that $$f_i(n) \leq f_j(n) \text{ for all } n \in \mathbb{N}.$$

2010 Iran MO (3rd Round), 4

sppose that $\sigma_k:\mathbb N \longrightarrow \mathbb R$ is a function such that $\sigma_k(n)=\sum_{d|n}d^k$. $\rho_k:\mathbb N \longrightarrow \mathbb R$ is a function such that $\rho_k\ast \sigma_k=\delta$. find a formula for $\rho_k$.($\frac{100}{6}$ points)

2010 Saudi Arabia BMO TST, 4

Let $f : N \to [0, \infty)$ be a function satisfying the following conditions: a) $f(4)=2$ b) $\frac{1}{f( 0 ) + f( 1)} + \frac{1}{f( 1 ) + f( 2 )} + ... + \frac{1}{f (n ) + f(n + 1) }= f ( n + 1)$ for all integers $n \ge 0$. Find $f(n)$ in closed form.

1987 Iran MO (2nd round), 2

Tags: function , algebra
Find all continuous functions $f: \mathbb R \to \mathbb R$ such that \[f(x^2-y^2)=f(x)^2 + f(y)^2, \quad \forall x,y \in \mathbb R.\]

1986 Traian Lălescu, 2.4

Prove that, if a continuous function has limits at $ \pm\infty , $ and these are equal, then it touches its maximum or minimum at one point.

2023 USA IMOTST, 1

Let $\lfloor \bullet \rfloor$ denote the floor function. For nonnegative integers $a$ and $b$, their [i]bitwise xor[/i], denoted $a \oplus b$, is the unique nonnegative integer such that $$ \left \lfloor \frac{a}{2^k} \right \rfloor+ \left\lfloor\frac{b}{2^k} \right\rfloor - \left\lfloor \frac{a\oplus b}{2^k}\right\rfloor$$ is even for every $k \ge 0$. Find all positive integers $a$ such that for any integers $x>y\ge 0$, we have \[ x\oplus ax \neq y \oplus ay. \] [i]Carl Schildkraut[/i]

2008 Harvard-MIT Mathematics Tournament, 8

Let $ T \equal{} \int_0^{\ln2} \frac {2e^{3x} \plus{} e^{2x} \minus{} 1} {e^{3x} \plus{} e^{2x} \minus{} e^x \plus{} 1}dx$. Evaluate $ e^T$.

2009 Jozsef Wildt International Math Competition, W. 6

Prove that$$p (n)= 2+ \left (p (1) + \cdots + p\left ( \left [\frac {n}{2} \right ] + \chi_1 (n)\right ) + \left (p'_2(n) + \cdots + p' _{ \left [\frac {n}{2} \right ] - 1}(n)\right )\right )$$for every $n \in \mathbb {N}$ with $n>2$ where $\chi $ denotes the principal character Dirichlet modulo 2, i.e.$$ \chi _1 (n) = \begin{cases} 1 & \text{if } (n,2)=1 \\ 0 &\text{if } (n,2)>1 \end{cases} $$with $p (n) $ we denote number of possible partitions of $n $ and $p' _m(n) $ we denote the number of partitions of $n$ in exactly $m$ sumands.

2001 AIME Problems, 10

How many positive integer multiples of 1001 can be expressed in the form $10^{j}-10^{i}$, where $i$ and $j$ are integers and $0\leq i < j \leq 99$?

2012 Today's Calculation Of Integral, 840

Let $x,\ y$ be real numbers. For a function $f(t)=x\sin t+y\cos t$, draw the domain of the points $(x,\ y)$ for which the following inequality holds. \[\left|\int_{-\pi}^{\pi} f(t)\cos t\ dt\right|\leq \int_{-\pi}^{\pi} \{f(t)\}^2dt.\]

2009 Romania National Olympiad, 4

Find all functions $ f:[0,1]\longrightarrow [0,1] $ that are bijective, continuous and have the property that, for any continuous function $ g:[0,1]\longrightarrow\mathbb{R} , $ the following equality holds. $$ \int_0^1 g\left( f(x) \right) dx =\int_0^1 g(x) dx $$

2005 Italy TST, 3

The function $\psi : \mathbb{N}\rightarrow\mathbb{N}$ is defined by $\psi (n)=\sum_{k=1}^n\gcd (k,n)$. $(a)$ Prove that $\psi (mn)=\psi (m)\psi (n)$ for every two coprime $m,n \in \mathbb{N}$. $(b)$ Prove that for each $a\in\mathbb{N}$ the equation $\psi (x)=ax$ has a solution.

2009 Peru IMO TST, 6

Let $ S\subseteq\mathbb{R}$ be a set of real numbers. We say that a pair $ (f, g)$ of functions from $ S$ into $ S$ is a [i]Spanish Couple[/i] on $ S$, if they satisfy the following conditions: (i) Both functions are strictly increasing, i.e. $ f(x) < f(y)$ and $ g(x) < g(y)$ for all $ x$, $ y\in S$ with $ x < y$; (ii) The inequality $ f\left(g\left(g\left(x\right)\right)\right) < g\left(f\left(x\right)\right)$ holds for all $ x\in S$. Decide whether there exists a Spanish Couple [list][*] on the set $ S \equal{} \mathbb{N}$ of positive integers; [*] on the set $ S \equal{} \{a \minus{} \frac {1}{b}: a, b\in\mathbb{N}\}$[/list] [i]Proposed by Hans Zantema, Netherlands[/i]