Found problems: 4776
2016 Balkan MO, 1
Find all injective functions $f: \mathbb R \rightarrow \mathbb R$ such that for every real number $x$ and every positive integer $n$,$$ \left|\sum_{i=1}^n i\left(f(x+i+1)-f(f(x+i))\right)\right|<2016$$
[i](Macedonia)[/i]
2007 Nicolae Coculescu, 1
Let be the set $ G=\{ (u,v)\in \mathbb{C}^2| u\neq 0 \} $ and a function $ \varphi :\mathbb{C}\setminus\{ 0\}\longrightarrow\mathbb{C}\setminus\{ 0\} $ having the property that the operation $ *:G^2\longrightarrow G $ defined as
$$ (a,b)*(c,d)=(ac,bc+d\varphi (a)) $$
is associative.
[b]a)[/b] Show that $ (G,*) $ is a group.
[b]b)[/b] Describe $ \varphi , $ knowing that $(G,*) $ is a commutative group.
[i]Marius Perianu[/i]
1998 AMC 8, 24
A rectangular board of 8 columns has squared numbered beginning in the upper left corner and moving left to right so row one is numbered 1 through 8, row two is 9 through 16, and so on. A student shades square 1, then skips one square and shades square 3, skips two squares and shades square 6, skips 3 squares and shades square 10, and continues in this way until there is at least one shaded square in each column. What is the number of the shaded square that first achieves this result?
[asy]
unitsize(20);
for(int a = 0; a < 10; ++a)
{
draw((0,a)--(8,a));
}
for (int b = 0; b < 9; ++b)
{
draw((b,0)--(b,9));
}
draw((0,0)--(0,-.5));
draw((1,0)--(1,-1.5));
draw((.5,-1)--(1.5,-1));
draw((2,0)--(2,-.5));
draw((4,0)--(4,-.5));
draw((5,0)--(5,-1.5));
draw((4.5,-1)--(5.5,-1));
draw((6,0)--(6,-.5));
draw((8,0)--(8,-.5));
fill((0,8)--(1,8)--(1,9)--(0,9)--cycle,black);
fill((2,8)--(3,8)--(3,9)--(2,9)--cycle,black);
fill((5,8)--(6,8)--(6,9)--(5,9)--cycle,black);
fill((1,7)--(2,7)--(2,8)--(1,8)--cycle,black);
fill((6,7)--(7,7)--(7,8)--(6,8)--cycle,black);
label("$2$",(1.5,8.2),N);
label("$4$",(3.5,8.2),N);
label("$5$",(4.5,8.2),N);
label("$7$",(6.5,8.2),N);
label("$8$",(7.5,8.2),N);
label("$9$",(0.5,7.2),N);
label("$11$",(2.5,7.2),N);
label("$12$",(3.5,7.2),N);
label("$13$",(4.5,7.2),N);
label("$14$",(5.5,7.2),N);
label("$16$",(7.5,7.2),N);
[/asy]
$\text{(A)}\ 36 \qquad \text{(B)}\ 64 \qquad \text{(C)}\ 78 \qquad \text{(D)}\ 91 \qquad \text{(E)}\ 120$
1993 IMO, 5
Let $\mathbb{N} = \{1,2,3, \ldots\}$. Determine if there exists a strictly increasing function $f: \mathbb{N} \mapsto \mathbb{N}$ with the following properties:
(i) $f(1) = 2$;
(ii) $f(f(n)) = f(n) + n, (n \in \mathbb{N})$.
2009 Today's Calculation Of Integral, 415
For a function $ f(x) \equal{} 6x(1 \minus{} x)$, suppose that positive constant $ c$ and a linear function $ g(x) \equal{} ax \plus{} b\ (a,\ b: \text{constants}\,\ a > 0)$ satisfy the following 3 conditions: $ c^2\int_0^1 f(x)\ dx \equal{} 1,\ \int_0^1 f(x)\{g(x)\}^2\ dx \equal{} 1,\ \int_0^1 f(x)g(x)\ dx \equal{} 0$. Answer the following questions.
(1) Find the constants $ a,\ b,\ c$.
(2) For natural number $ n$, let $ I_n \equal{} \int_0^1 x^ne^x\ dx$. Express $ I_{n \plus{} 1}$ in terms of $ I_n$. Then evaluate $ I_1,\ I_2,\ I_3$.
(3) Evaluate the definite integrals $ \int_0^1 e^xf(x)\ dx$ and $ \int_0^1 e^xf(x)g(x)\ dx$.
(4) For real numbers $ s,\ t$, define $ J \equal{} \int_0^1 \{e^x \minus{} cs \minus{} tg(x)\}^2\ dx$. Find the constants $ A,\ B,\ C,\ D,\ E$ by setting $ J \equal{} As^2 \plus{} Bst \plus{} Ct^2 \plus{} Ds\plus{}Et \plus{} F$.
(You don't need to find the constant $ F$).
(5) Find the values of $ s,\ t$ for which $ J$ is minimal.
2019 Rioplatense Mathematical Olympiad, Level 3, 2
Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that
$f(f(x)^2+f(y^2))=(x-y)f(x-f(y))$
2003 AMC 12-AHSME, 6
Define $ x \heartsuit y$ to be $ |x\minus{}y|$ for all real numbers $ x$ and $ y$. Which of the following statements is [b]not[/b] true?
$\textbf{(A)}\ x \heartsuit y \equal{} y \heartsuit x \text{ for all } x \text{ and } y$
$\textbf{(B)}\ 2(x \heartsuit y) \equal{} (2x) \heartsuit (2y) \text{ for all } x \text{ and } y$
$\textbf{(C)}\ x \heartsuit 0 \equal{} x \text{ for all } x$
$\textbf{(D)}\ x \heartsuit x \equal{} 0 \text{ for all } x$
$\textbf{(E)}\ x \heartsuit y > 0 \text{ if } x \ne y$
KoMaL A Problems 2018/2019, A. 735
For any function $f:[0,1]\to [0,1]$, let $P_n (f)$ denote the number of fixed points of the function $\underbrace{f(f(\dotsc f}_{n} (x)\dotsc )$, i.e., the number of points $x\in [0,1]$ satisfying $\underbrace{f(f(\dotsc f}_{n} (x)\dotsc )=x$. Construct a piecewise linear, continuous, surjective function $f:[0,1] \to [0,1]$ such that for a suitable $2<A<3$, the sequence $\frac{P_n(f)}{A^n}$ converges.
[i]Based on the 8th problem of the Miklós Schweitzer competition, 2018[/i]
1978 Miklós Schweitzer, 5
Suppose that $ R(z)= \sum_{n=-\infty}^{\infty} a_nz^n$ converges in a neighborhood of the unit circle $ \{ z : \;|z|=1\ \}$ in the complex plane, and $ R(z)=P(z) / Q(z)$ is a rational function in this neighborhood, where $ P$ and $ Q$ are polynomials of degree at most $ k$. Prove that there is a constant $ c$ independent of $ k$ such that \[ \sum_{n=-\infty} ^{\infty} |a_n| \leq ck^2 \max_{|z|=1} |R(z)|.\]
[i]H. S. Shapiro, G. Somorjai[/i]
2001 Romania National Olympiad, 1
Let $f:\mathbb{R}\rightarrow\mathbb{R}$ a continuous function, derivable on $R\backslash\{x_0\}$, having finite side derivatives in $x_0$. Show that there exists a derivable function $g:\mathbb{R}\rightarrow\mathbb{R}$, a linear function $h:\mathbb{R}\rightarrow\mathbb{R}$ and $\alpha\in\{-1,0,1\}$ such that:
\[ f(x)=g(x)+\alpha |h(x)|,\ \forall x\in\mathbb{R} \]
2004 District Olympiad, 3
Let $f:\mathbb{R}\rightarrow \mathbb{R}$ a function such that $f\left(\frac{a+b}{2}\right)\in \{f(a),f(b)\},\ (\forall)a,b\in \mathbb{R}$.
a) Give an example of a non-constant function that satisfy the hypothesis.
b)If $f$ is continuous, prove that $f$ is constant.
1985 IberoAmerican, 2
To each positive integer $ n$ it is assigned a non-negative integer $f(n)$ such that the following conditions are satisfied:
(1) $ f(rs) \equal{} f(r)\plus{}f(s)$
(2) $ f(n) \equal{} 0$, if the first digit (from right to left) of $ n$ is 3.
(3) $ f(10) \equal{} 0$.
Find $f(1985)$. Justify your answer.
1953 Miklós Schweitzer, 9
[b]9.[/b] Let $w=f(x)$ be regular in $ \left | z \right |\leq 1$. For $0\leq r \leq 1$, denote by c, the image by $f(z)$ of the circle $\left | z \right | = r$. Show that if the maximal length of the chords of $c_{1}$ is $1$, then for every $r$ such that $0\leq r \leq 1$, the maximal length of the chords of c, is not greater than $r$. [b](F. 1)[/b]
1958 February Putnam, B6
A projectile moves in a resisting medium. The resisting force is a function of the velocity and is directed along the velocity vector. The equation $x=f(t)$ (where $f(t)$ is not constant) gives the horizontal distance in terms of the time $t$. Show that the vertical distance $y$ is given by
$$y=-gf(t) \int \frac{dt}{f'(t)} + g \int \frac{f(t)}{f'(t)} \, dt +Af(t)+B$$
where $A$ and $B$ are constants and $g$ is the acceleration due to gravity.
2010 AMC 10, 4
For a real number $ x$, define $ \heartsuit (x)$ to be the average of $ x$ and $ x^2$. What is $ \heartsuit(1) \plus{} \heartsuit(2) \plus{}\heartsuit(3)$?
$ \textbf{(A)}\ 3 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 12 \qquad \textbf{(E)}\ 20$
2005 Bulgaria Team Selection Test, 2
Find the number of the subsets $B$ of the set $\{1,2,\cdots, 2005 \}$ such that the sum of the elements of $B$ is congruent to $2006$ modulo $2048$
2015 Saudi Arabia BMO TST, 1
Find all strictly increasing functions $f : Z \to R$ such that for any $m, n \in Z$ there exists a $k \in Z$ such that $f(k) = f(m) - f(n)$.
Nguyễn Duy Thái Sơn
2020 Bulgaria EGMO TST, 2
The function $f:\mathbb{R} \to \mathbb{R}$ is such that $f(f(x+1)) = x^3+1$ for all real numbers $x$. Prove that the equation $f(x) = 0 $ has exactly one real root.
2009 Vietnam Team Selection Test, 1
Let $ a,b,c$ be positive numbers.Find $ k$ such that:
$ (k \plus{} \frac {a}{b \plus{} c})(k \plus{} \frac {b}{c \plus{} a})(k \plus{} \frac {c}{a \plus{} b}) \ge (k \plus{} \frac {1}{2})^3$
2005 Pan African, 3
Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function such that: For all $a$ and $b$ in $\mathbb{Z} - \{0\}$, $f(ab) \geq f(a) + f(b)$. Show that for all $a \in \mathbb{Z} - \{0\}$ we have $f(a^n) = nf(a)$ for all $n \in \mathbb{N}$ if and only if $f(a^2) = 2f(a)$
2005 China Team Selection Test, 3
Let $\alpha$ be given positive real number, find all the functions $f: N^{+} \rightarrow R$ such that $f(k + m) = f(k) + f(m)$ holds for any positive integers $k$, $m$ satisfying $\alpha m \leq k \leq (\alpha + 1)m$.
2014 Thailand Mathematical Olympiad, 2
Find all functions $f : R \to R$ satisfying $f(xy - 1) + f(x)f(y) = 2xy - 1$ for all real numbers $x, y$
2011 Korea National Olympiad, 4
Let $ x_1, x_2, \cdots, x_{25} $ real numbers such that $ 0 \le x_i \le i (i=1, 2, \cdots, 25) $. Find the maximum value of
\[x_{1}^{3}+x_{2}^{3}+\cdots +x_{25}^{3} - ( x_1x_2x_3 + x_2x_3x_4 + \cdots x_{25}x_1x_2 ) \]
1991 Romania Team Selection Test, 10
Let $a_1<a_2<\cdots<a_n$ be positive integers. Some colouring of $\mathbb{Z}$ is periodic with period $t$ such that for each $x\in \mathbb{Z}$ exactly one of $x+a_1,x+a_2,\dots,x+a_n$ is coloured. Prove that $n\mid t$.
[i]Andrei Radulescu-Banu[/i]
2013 USA TSTST, 2
A finite sequence of integers $a_1, a_2, \dots, a_n$ is called [i]regular[/i] if there exists a real number $x$ satisfying \[ \left\lfloor kx \right\rfloor = a_k \quad \text{for } 1 \le k \le n. \] Given a regular sequence $a_1, a_2, \dots, a_n$, for $1 \le k \le n$ we say that the term $a_k$ is [i]forced[/i] if the following condition is satisfied: the sequence \[ a_1, a_2, \dots, a_{k-1}, b \] is regular if and only if $b = a_k$. Find the maximum possible number of forced terms in a regular sequence with $1000$ terms.