This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2017 Vietnam National Olympiad, 1

Tags: algebra , function
Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying relation : $$f(xf(y)-f(x))=2f(x)+xy$$ $\forall x,y \in \mathbb{R}$

2005 Today's Calculation Of Integral, 11

Calculate the following indefinite integrals. [1] $\int \frac{6x+1}{\sqrt{3x^2+x+4}}dx$ [2] $\int \frac{e^x}{e^x+e^{a-x}}dx$ [3] $\int \frac{(\sqrt{x}+1)^3}{\sqrt{x}}dx$ [4] $\int x\ln (x^2-1)dx$ [5] $\int \frac{2(x+2)}{x^2+4x+1}dx$

2012 Albania Team Selection Test, 5

Let $f:\mathbb R^+ \to \mathbb R^+$ be a function such that: \[ x,y > 0 \qquad f(x+f(y)) = yf(xy+1). \] a) Show that $(y-1)*(f(y)-1) \le 0$ for $y>0$. b) Find all such functions that require the given condition.

2023 Indonesia TST, A

Find all function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfied \[f(x+y) + f(x)f(y) = f(xy) + 1 \] $\forall x, y \in \mathbb{R}$

2013 Iran MO (3rd Round), 5

$p=3k+1$ is a prime number. For each $m \in \mathbb Z_p$, define function $L$ as follow: $L(m) = \sum_{x \in \mathbb{Z}_p}^{ } \left ( \frac{x(x^3 + m)}{p} \right )$ [i]a)[/i] For every $m \in \mathbb Z_p$ and $t \in {\mathbb Z_p}^{*}$ prove that $L(m) = L(mt^3)$. (5 points) [i]b)[/i] Prove that there is a partition of ${\mathbb Z_p}^{*} = A \cup B \cup C$ such that $|A| = |B| = |C| = \frac{p-1}{3}$ and $L$ on each set is constant. Equivalently there are $a,b,c$ for which $L(x) = \left\{\begin{matrix} a & & &x \in A \\ b& & &x \in B \\ c& & & x \in C \end{matrix}\right.$ . (7 points) [i]c)[/i] Prove that $a+b+c = -3$. (4 points) [i]d)[/i] Prove that $a^2 + b^2 + c^2 = 6p+3$. (12 points) [i]e)[/i] Let $X= \frac{2a+b+3}{3},Y= \frac{b-a}{3}$, show that $X,Y \in \mathbb Z$ and also show that :$p= X^2 + XY +Y^2$. (2 points) (${\mathbb Z_p}^{*} = \mathbb Z_p \setminus \{0\}$)

2025 District Olympiad, P4

Let $f:[0,1]\rightarrow\mathbb{R}$ be a continuous function. Define $\tilde{f}:[0,1]\rightarrow\mathbb{R}$ as $$\tilde{f}(x)=\begin{dcases} \frac{1}{x}\cdot\int_0^x f(t)dt &\text{ for } x>0;\\ f(0) &\text{ for }x=0.\end{dcases}$$ Show that: [list=a] [*] $\tilde{f}$ is continuous in $0$ and differentiable on $(0,1]$. [*] the following equality takes place: $$\int_0^1 f^2(x)dx = \left(\int_0^1 f(x)dx\right)^2 + \int_0^1 \left(f(x)-\tilde{f}(x)\right)^2dx.$$

2019 Jozsef Wildt International Math Competition, W. 56

Let $f$, $g$, $h : [a, b] \to \mathbb{R}$, three integrable functions such that:$$\int \limits_a^b fgdx=\int \limits_a^bghdx=\int \limits_a^bhfdx=\int \limits_a^bg^2dx\int \limits_a^bh^2dx=1$$Then$$\int \limits_a^bg^2dx=\int \limits_a^bh^2dx=1$$

2024 Brazil Team Selection Test, 4

Find all pairs of positive integers \( (a, b) \) such that \( f(x) = x \) is the only function \( f : \mathbb{R} \to \mathbb{R} \) that satisfies \[ f^a(x)f^b(y) + f^b(x)f^a(y) = 2xy \quad \text{for all } x, y \in \mathbb{R}. \] Here, \( f^n(x) \) represents the function obtained by applying \( f \) \( n \) times to \( x \). That is, \( f^1(x) = f(x) \) and \( f^{n+1}(x) = f(f^n(x))\) for all \(n \geq 1\).

2010 Germany Team Selection Test, 3

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that \[f(x)f(y) = (x+y+1)^2 \cdot f \left( \frac{xy-1}{x+y+1} \right)\] $\forall x,y \in \mathbb{R}$ with $x+y+1 \neq 0$ and $f(x) > 1$ $\forall x > 0.$

2000 China Team Selection Test, 3

Tags: function , algebra
Let $n$ be a positive integer. Denote $M = \{(x, y)|x, y \text{ are integers }, 1 \leq x, y \leq n\}$. Define function $f$ on $M$ with the following properties: [b]a.)[/b] $f(x, y)$ takes non-negative integer value; [b] b.)[/b] $\sum^n_{y=1} f(x, y) = n - 1$ for $1 \eq x \leq n$; [b]c.)[/b] If $f(x_1, y_1)f(x2, y2) > 0$, then $(x_1 - x_2)(y_1 - y_2) \geq 0.$ Find $N(n)$, the number of functions $f$ that satisfy all the conditions. Give the explicit value of $N(4)$.

2007 Today's Calculation Of Integral, 245

A sextic funtion $ y \equal{} ax^6 \plus{} bx^5 \plus{} cx^4 \plus{} dx^3 \plus{} ex^2 \plus{} fx \plus{} g\ (a\neq 0)$ touches the line $ y \equal{} px \plus{} q$ at $ x \equal{} \alpha ,\ \beta ,\ \gamma \ (\alpha < \beta < \gamma ).$ Find the area of the region bounded by these graphs in terms of $ a,\ \alpha ,\ \beta ,\gamma .$ created by kunny

2014 Saint Petersburg Mathematical Olympiad, 1

Let $f(x)$ is such function, that $f(x)=1$ for integer $x$ and $f(x)=0$ for non integer $x$. Build such function using only variable $x$, integer numbers, and operations $+,-,*,/,[.]$(plus, minus, multiply,divide and integer part)

1997 Putnam, 2

Tags: function
$f$ be a twice differentiable real valued function satisfying \[ f(x)+f^{\prime\prime}(x)=-xg(x)f^{\prime}(x) \] where $g(x)\ge 0$ for all real $x$. Show that $|f(x)|$ is bounded.

Taiwan TST 2015 Round 1, 2

Define the function $f:(0,1)\to (0,1)$ by \[\displaystyle f(x) = \left\{ \begin{array}{lr} x+\frac 12 & \text{if}\ \ x < \frac 12\\ x^2 & \text{if}\ \ x \ge \frac 12 \end{array} \right.\] Let $a$ and $b$ be two real numbers such that $0 < a < b < 1$. We define the sequences $a_n$ and $b_n$ by $a_0 = a, b_0 = b$, and $a_n = f( a_{n -1})$, $b_n = f (b_{n -1} )$ for $n > 0$. Show that there exists a positive integer $n$ such that \[(a_n - a_{n-1})(b_n-b_{n-1})<0.\] [i]Proposed by Denmark[/i]

2005 Bulgaria Team Selection Test, 2

Find the number of the subsets $B$ of the set $\{1,2,\cdots, 2005 \}$ such that the sum of the elements of $B$ is congruent to $2006$ modulo $2048$

2004 Tuymaada Olympiad, 3

Zeroes and ones are arranged in all the squares of $n\times n$ table. All the squares of the left column are filled by ones, and the sum of numbers in every figure of the form [asy]size(50); draw((2,1)--(0,1)--(0,2)--(2,2)--(2,0)--(1,0)--(1,2));[/asy] (consisting of a square and its neighbours from left and from below) is even. Prove that no two rows of the table are identical. [i]Proposed by O. Vanyushina[/i]

2002 AIME Problems, 8

Find the least positive integer $k$ for which the equation $\lfloor \frac{2002}{n}\rfloor = k$ has no integer solutions for $n.$ (The notation $\lfloor x \rfloor$ means the greatest integer less than or equal to $x.$)

2021 AMC 10 Spring, 18

Tags: function , prob
Let $f$ be a function defined on the set of positive rational numbers with the property that $f(a\cdot b)=f(a)+f(b)$ for all positive rational numbers $a$ and $b$. Suppose that $f$ also has the property that $f(p)=p$ for every prime number $p$. For which of the following numbers $x$ is $f(x)<0?$ $\textbf{(A) } \frac{17}{32} \qquad \textbf{(B) } \frac{11}{16} \qquad \textbf{(C) } \frac{7}{9} \qquad \textbf{(D) } \frac{7}{6} \qquad \textbf{(E) } \frac{25}{11}$

2016 Taiwan TST Round 2, 2

Find all function $f:\mathbb{Z}\rightarrow\mathbb{Z}$ such that $f(f(x)+f(y))+f(x)f(y)=f(x+y)f(x-y)$ for all integer $x,y$

1996 Iran MO (3rd Round), 4

Tags: function , algebra
Determine all functions $f : \mathbb N_0 \rightarrow \mathbb N_0 - \{1\}$ such that \[f(n + 1) + f(n + 3) = f(n + 5)f(n + 7) - 1375, \qquad \forall n \in \mathbb N.\]

2001 VJIMC, Problem 3

Let $f:(0,+\infty)\to(0,+\infty)$ be a decreasing function which satisfies $\int^\infty_0f(x)\text dx<+\infty$. Prove that $\lim_{x\to+\infty}xf(x)=0$.

2012 Germany Team Selection Test, 3

Determine all pairs $(f,g)$ of functions from the set of real numbers to itself that satisfy \[g(f(x+y)) = f(x) + (2x + y)g(y)\] for all real numbers $x$ and $y$. [i]Proposed by Japan[/i]

2018 Thailand TST, 3

Tags: function , algebra
Let $S$ be a finite set, and let $\mathcal{A}$ be the set of all functions from $S$ to $S$. Let $f$ be an element of $\mathcal{A}$, and let $T=f(S)$ be the image of $S$ under $f$. Suppose that $f\circ g\circ f\ne g\circ f\circ g$ for every $g$ in $\mathcal{A}$ with $g\ne f$. Show that $f(T)=T$.

1998 Harvard-MIT Mathematics Tournament, 8

Tags: function
Given any two positive real numbers $x$ and $y$, then $x\Diamond y$ is a positive real number defined in terms of $x$ and $y$ by some fixed rule. Suppose the operation $x\Diamond y$ satisfies the equations $(x\cdot y)\Diamond y=x(y\Diamond y)$ and $(x\Diamond 1)\Diamond x=x\Diamond 1$ for all $x,y>0$. Given that $1\Diamond 1=1$, find $19\Diamond 98$.

2011 Argentina Team Selection Test, 4

Determine all positive integers $n$ such that the number $n(n+2)(n+4)$ has at most $15$ positive divisors.