Found problems: 4776
2012 China Team Selection Test, 1
Given an integer $n\ge 4$. $S=\{1,2,\ldots,n\}$. $A,B$ are two subsets of $S$ such that for every pair of $(a,b),a\in A,b\in B, ab+1$ is a perfect square. Prove that
\[\min \{|A|,|B|\}\le\log _2n.\]
2012 Iran MO (3rd Round), 3
Prove that for each $n \in \mathbb N$ there exist natural numbers $a_1<a_2<...<a_n$ such that $\phi(a_1)>\phi(a_2)>...>\phi(a_n)$.
[i]Proposed by Amirhossein Gorzi[/i]
1991 Putnam, A5
A5) Find the maximum value of $\int_{0}^{y}\sqrt{x^{4}+(y-y^{2})^{2}}dx$ for $0\leq y\leq 1$.
I don't have a solution for this yet. I figure this may be useful: Let the integral be denoted $f(y)$, then according to the [url=http://mathworld.wolfram.com/LeibnizIntegralRule.html]Leibniz Integral Rule[/url] we have
$\frac{df}{dy}=\int_{0}^{y}\frac{y(1-y)(1-2y)}{\sqrt{x^{4}+(y-y^{2})^{2}}}dx+\sqrt{y^{4}+(y-y^{2})^{2}}$
Now what?
2012 Indonesia TST, 1
Let $P$ be a polynomial with real coefficients. Find all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that there exists a real number $t$ such that
\[f(x+t) - f(x) = P(x)\]
for all $x \in \mathbb{R}$.
1994 Polish MO Finals, 3
$k$ is a fixed positive integer. Let $a_n$ be the number of maps $f$ from the subsets of $\{1, 2, ... , n\}$ to $\{1, 2, ... , k\}$ such that for all subsets $A, B$ of $\{1, 2, ... , n\}$ we have $f(A \cap B) = \min (f(A), f(B))$. Find $\lim_{n \to \infty} \sqrt[n]{a_n}$.
2012 VJIMC, Problem 1
Let $f:[0,1]\to[0,1]$ be a differentiable function such that $|f'(x)|\ne1$ for all $x\in[0,1]$. Prove that there exist unique $\alpha,\beta\in[0,1]$ such that $f(\alpha)=\alpha$ and $f(\beta)=1-\beta$.
2008 Polish MO Finals, 2
A function $ f: R^3\rightarrow R$ for all reals $ a,b,c,d,e$ satisfies a condition:
\[ f(a,b,c)\plus{}f(b,c,d)\plus{}f(c,d,e)\plus{}f(d,e,a)\plus{}f(e,a,b)\equal{}a\plus{}b\plus{}c\plus{}d\plus{}e\]
Show that for all reals $ x_1,x_2,\ldots,x_n$ ($ n\geq 5$) equality holds:
\[ f(x_1,x_2,x_3)\plus{}f(x_2,x_3,x_4)\plus{}\ldots \plus{}f(x_{n\minus{}1},x_n,x_1)\plus{}f(x_n,x_1,x_2)\equal{}x_1\plus{}x_2\plus{}\ldots\plus{}x_n\]
2012 France Team Selection Test, 1
Let $k>1$ be an integer. A function $f:\mathbb{N^*}\to\mathbb{N^*}$ is called $k$-[i]tastrophic[/i] when for every integer $n>0$, we have $f_k(n)=n^k$ where $f_k$ is the $k$-th iteration of $f$:
\[f_k(n)=\underbrace{f\circ f\circ\cdots \circ f}_{k\text{ times}}(n)\]
For which $k$ does there exist a $k$-tastrophic function?
1954 Miklós Schweitzer, 3
[b]3.[/b] Is there a real-valued function $Af$, defined on the space of the functions, continuous on $[0,1]$, such that $f(x)\leq g(x) $ and$f(x)\not\equiv g(x) $ inply $Af< Ag$? Is this also true if the functions $f(x)$ are required to be monotonically increasing (rather than continuous) on $[0,1]$? [b](R.4)[/b]
2021 Iran Team Selection Test, 3
There exist $4$ positive integers $a,b,c,d$ such that $abcd \neq 1$ and each pair of them have a GCD of $1$. Two functions $f,g : \mathbb{N} \rightarrow \{0,1\}$ are multiplicative functions such that for each positive integer $n$ we have :
$$f(an+b)=g(cn+d)$$
Prove that at least one of the followings hold.
$i)$ for each positive integer $n$ we have $f(an+b)=g(cn+d)=0$
$ii)$ There exists a positive integer $k$ such that for all $n$ where $(n,k)=1$ we have $g(n)=f(n)=1$
(Function $f$ is multiplicative if for any natural numbers $a,b$ we have $f(ab)=f(a)f(b)$)
Proposed by [i]Navid Safaii[/i]
2008 ITest, 62
Find the number of values of $x$ such that the number of square units in the area of the isosceles triangle with sides $x$, $65$, and $65$ is a positive integer.
2019 Thailand TST, 3
Let $f : \{ 1, 2, 3, \dots \} \to \{ 2, 3, \dots \}$ be a function such that $f(m + n) | f(m) + f(n) $ for all pairs $m,n$ of positive integers. Prove that there exists a positive integer $c > 1$ which divides all values of $f$.
2007 Romania Team Selection Test, 1
Prove that the function $f : \mathbb{N}\longrightarrow \mathbb{Z}$ defined by $f(n) = n^{2007}-n!$, is injective.
2010 Indonesia TST, 2
Find all functions $ f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying \[ f(x^3\plus{}y^3)\equal{}xf(x^2)\plus{}yf(y^2)\] for all real numbers $ x$ and $ y$.
[i]Hery Susanto, Malang[/i]
2006 IMC, 2
Find all functions $f: \mathbb{R}\to{R}$ such that for any $a<b$, $f([a,b])$ is an interval of length $b-a$
2017 EGMO, 2
Find the smallest positive integer $k$ for which there exists a colouring of the positive integers $\mathbb{Z}_{>0}$ with $k$ colours and a function $f:\mathbb{Z}_{>0}\to \mathbb{Z}_{>0}$ with the following two properties:
$(i)$ For all positive integers $m,n$ of the same colour, $f(m+n)=f(m)+f(n).$
$(ii)$ There are positive integers $m,n$ such that $f(m+n)\ne f(m)+f(n).$
[i]In a colouring of $\mathbb{Z}_{>0}$ with $k$ colours, every integer is coloured in exactly one of the $k$ colours. In both $(i)$ and $(ii)$ the positive integers $m,n$ are not necessarily distinct.[/i]
1985 Vietnam Team Selection Test, 2
Find all real values of a for which the equation $ (a \minus{} 3x^2 \plus{} \cos \frac {9\pi x}{2})\sqrt {3 \minus{} ax} \equal{} 0$ has an odd number of solutions in the interval $ [ \minus{} 1,5]$
1990 IMO Longlists, 86
Given function $f(x) = \sin x + \sin \pi x$ and positive number $d$. Prove that there exists real number $p$ such that $|f(x + p) - f(x)| < d$ holds for all real numbers $x$, and the value of $p$ can be arbitrarily large.
Oliforum Contest II 2009, 4
Let $ m$ a positive integer and $ p$ a prime number, both fixed. Define $ S$ the set of all $ m$-uple of positive integers $ \vec{v} \equal{} (v_1,v_2,\ldots,v_m)$ such that $ 1 \le v_i \le p$ for all $ 1 \le i \le m$. Define also the function $ f(\cdot): \mathbb{N}^m \to \mathbb{N}$, that associates every $ m$-upla of non negative integers $ (a_1,a_2,\ldots,a_m)$ to the integer $ \displaystyle f(a_1,a_2,\ldots,a_m) \equal{} \sum_{\vec{v} \in S} \left(\prod_{1 \le i \le m}{v_i^{a_i}} \right)$.
Find all $ m$-uple of non negative integers $ (a_1,a_2,\ldots,a_m)$ such that $ p \mid f(a_1,a_2,\ldots,a_m)$.
[i](Pierfrancesco Carlucci)[/i]
1993 Turkey Team Selection Test, 6
Determine all functions $f: \mathbb{Q^+} \rightarrow \mathbb{Q^+}$ that satisfy:
\[f\left(x+\frac{y}{x}\right) = f(x)+f\left(\frac{y}{x}\right)+2y \:\text{for all}\: x, y \in \mathbb{Q^+}\]
1987 IMO Longlists, 74
Does there exist a function $f : \mathbb N \to \mathbb N$, such that $f(f(n)) =n + 1987$ for every natural number $n$? [i](IMO Problem 4)[/i]
[i]Proposed by Vietnam.[/i]
2010 Princeton University Math Competition, 7
Let $f$ be a function such that $f(x)+f(x+1)=2^x$ and $f(0)=2010$. Find the last two digits of $f(2010)$.
2015 Belarus Team Selection Test, 3
Determine all functions $f: \mathbb{Z}\to\mathbb{Z}$ satisfying \[f\big(f(m)+n\big)+f(m)=f(n)+f(3m)+2014\] for all integers $m$ and $n$.
[i]Proposed by Netherlands[/i]
2019 Singapore MO Open, 2
find all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that
$f(-f(x)-f(y)) = 1-x-y$ $\quad \forall x,y \in \mathbb{Z}$
2013 USA Team Selection Test, 4
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function, and let $f^m$ be $f$ applied $m$ times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2k}(n)=n+k$, and let $k_n$ be the smallest such $k$. Prove that the sequence $k_1,k_2,\ldots $ is unbounded.
[i]Proposed by Palmer Mebane, United States[/i]