This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2007 USAMO, 6

Let $ABC$ be an acute triangle with $\omega,S$, and $R$ being its incircle, circumcircle, and circumradius, respectively. Circle $\omega_{A}$ is tangent internally to $S$ at $A$ and tangent externally to $\omega$. Circle $S_{A}$ is tangent internally to $S$ at $A$ and tangent internally to $\omega$. Let $P_{A}$ and $Q_{A}$ denote the centers of $\omega_{A}$ and $S_{A}$, respectively. Define points $P_{B}, Q_{B}, P_{C}, Q_{C}$ analogously. Prove that \[8P_{A}Q_{A}\cdot P_{B}Q_{B}\cdot P_{C}Q_{C}\leq R^{3}\; , \] with equality if and only if triangle $ABC$ is equilateral.

1996 South africa National Olympiad, 6

Tags: algebra , function
The function $f$ is increasing and convex (i.e. every straight line between two points on the graph of $f$ lies above the graph) and satisfies $f(f(x))=3^x$ for all $x\in\mathbb{R}$. If $f(0)=0.5$ determine $f(0.75)$ with an error of at most $0.025$. The following are corrent to the number of digits given: \[3^{0.25}=1.31607,\quad 3^{0.50}=1.73205,\quad 3^{0.75}=2.27951.\]

2006 Italy TST, 3

Find all functions $f : \mathbb{Z} \rightarrow \mathbb{Z}$ such that for all integers $m,n$, \[f(m - n + f(n)) = f(m) + f(n).\]

2004 Iran MO (3rd Round), 5

assume that k,n are two positive integer $k\leq n$count the number of permutation $\{\ 1,\dots ,n\}\ $ st for any $1\leq i,j\leq k$and any positive integer m we have $f^m(i)\neq j$ ($f^m$ meas iterarte function,)

2010 Today's Calculation Of Integral, 526

For a function satisfying $ f'(x) > 0$ for $ a\leq x\leq b$, let $ F(x) \equal{} \int_a^b |f(t) \minus{} f(x)|\ dt$. For what value of $ x$ is $ F(x)$ is minimized?

1998 Harvard-MIT Mathematics Tournament, 1

Farmer Tim is lost in the densely-forested Cartesian plane. Starting from the origin he walks a sinusoidal path in search of home; that is, after $t$ minutes he is at position $(t,\sin t)$. Five minutes after he sets out, Alex enters the forest at the origin and sets out in search of Tim. He walks in such a way that after he has been in the forest for $m$ minutes, his position is $(m,\cos t)$. What is the greatest distance between Alex and Farmer Tim while they are walking in these paths?

1992 IMO Longlists, 26

Let $\,{\mathbb{R}}\,$ denote the set of all real numbers. Find all functions $\,f: {\mathbb{R}}\rightarrow {\mathbb{R}}\,$ such that \[ f\left( x^{2}+f(y)\right) =y+\left( f(x)\right) ^{2}\hspace{0.2in}\text{for all}\,x,y\in \mathbb{R}. \]

2001 IMO Shortlist, 4

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, satisfying \[ f(xy)(f(x) - f(y)) = (x-y)f(x)f(y) \] for all $x,y$.

1998 Slovenia National Olympiad, Problem 2

Tags: function , algebra
find all functions $f(x)$ satisfying: $(\forall x\in R) f(x)+xf(1-x)=x^2+1$

1983 Canada National Olympiad, 2

For each $r\in\mathbb{R}$ let $T_r$ be the transformation of the plane that takes the point $(x, y)$ into the point $(2^r x; r2^r x+2^r y)$. Let $F$ be the family of all such transformations (i.e. $F = \{T_r : r\in\mathbb{R}\}$). Find all curves $y = f(x)$ whose graphs remain unchanged by every transformation in $F$.

2018 Greece Team Selection Test, 3

Find all functions $f:\mathbb{Z}_{>0}\mapsto\mathbb{Z}_{>0}$ such that $$xf(x)+(f(y))^2+2xf(y)$$ is perfect square for all positive integers $x,y$. **This problem was proposed by me for the BMO 2017 and it was shortlisted. We then used it in our TST.

2002 Tuymaada Olympiad, 2

Find all the functions $f(x),$ continuous on the whole real axis, such that for every real $x$ \[f(3x-2)\leq f(x)\leq f(2x-1).\] [i]Proposed by A. Golovanov[/i]

2011 Romanian Masters In Mathematics, 1

Tags: algebra , function
Prove that there exist two functions $f,g \colon \mathbb{R} \to \mathbb{R}$, such that $f\circ g$ is strictly decreasing and $g\circ f$ is strictly increasing. [i](Poland) Andrzej Komisarski and Marcin Kuczma[/i]

2011 Greece Team Selection Test, 3

Find all functions $f,g: \mathbb{Q}\to \mathbb{Q}$ such that the following two conditions hold: $$f(g(x)-g(y))=f(g(x))-y \ \ (1)$$ $$g(f(x)-f(y))=g(f(x))-y\ \ (2)$$ for all $x,y \in \mathbb{Q}$.

2010 Romanian Master of Mathematics, 4

Determine whether there exists a polynomial $f(x_1, x_2)$ with two variables, with integer coefficients, and two points $A=(a_1, a_2)$ and $B=(b_1, b_2)$ in the plane, satisfying the following conditions: (i) $A$ is an integer point (i.e $a_1$ and $a_2$ are integers); (ii) $|a_1-b_1|+|a_2-b_2|=2010$; (iii) $f(n_1, n_2)>f(a_1, a_2)$ for all integer points $(n_1, n_2)$ in the plane other than $A$; (iv) $f(x_1, x_2)>f(b_1, b_2)$ for all integer points $(x_1, x_2)$ in the plane other than $B$. [i]Massimo Gobbino, Italy[/i]

2008 China Team Selection Test, 5

For two given positive integers $ m,n > 1$, let $ a_{ij} (i = 1,2,\cdots,n, \; j = 1,2,\cdots,m)$ be nonnegative real numbers, not all zero, find the maximum and the minimum values of $ f$, where \[ f = \frac {n\sum_{i = 1}^{n}(\sum_{j = 1}^{m}a_{ij})^2 + m\sum_{j = 1}^{m}(\sum_{i= 1}^{n}a_{ij})^2}{(\sum_{i = 1}^{n}\sum_{j = 1}^{m}a_{ij})^2 + mn\sum_{i = 1}^{n}\sum_{j=1}^{m}a_{ij}^2}. \]

2007 India IMO Training Camp, 3

Let $\mathbb X$ be the set of all bijective functions from the set $S=\{1,2,\cdots, n\}$ to itself. For each $f\in \mathbb X,$ define \[T_f(j)=\left\{\begin{aligned} 1, \ \ \ & \text{if} \ \ f^{(12)}(j)=j,\\ 0, \ \ \ & \text{otherwise}\end{aligned}\right.\] Determine $\sum_{f\in\mathbb X}\sum_{j=1}^nT_{f}(j).$ (Here $f^{(k)}(x)=f(f^{(k-1)}(x))$ for all $k\geq 2.$)

2011 International Zhautykov Olympiad, 2

Let $n$ be integer, $n>1.$ An element of the set $M=\{ 1,2,3,\ldots,n^2-1\}$ is called [i]good[/i] if there exists some element $b$ of $M$ such that $ab-b$ is divisible by $n^2.$ Furthermore, an element $a$ is called [i]very good[/i] if $a^2-a$ is divisible by $n^2.$ Let $g$ denote the number of [i]good[/i] elements in $M$ and $v$ denote the number of [i]very good[/i] elements in $M.$ Prove that \[v^2+v \leq g \leq n^2-n.\]

1999 Abels Math Contest (Norwegian MO), 1a

Tags: algebra , function
Find a function $f$ such that $f(t^2 +t +1) = t$ for all real $t \ge 0$

2007 Romania National Olympiad, 4

Let $f: \mathbb{R}\rightarrow\mathbb{R}$ be a differentiable function with continuous derivative, that satisfies $f\big(x+f'(x)\big)=f(x)$. Let's call this property $(P)$. a) Show that if $f$ is a function with property $(P)$, then there exists a real $x$ such that $f'(x)=0$. b) Give an example of a non-constant function $f$ with property $(P)$. c) Show that if $f$ has property $(P)$ and the equation $f'(x)=0$ has at least two solutions, then $f$ is a constant function.

2008 Miklós Schweitzer, 1

Tags: function
Let $H \subset P(X)$ be a system of subsets of $X$ and $\kappa > 0$ be a cardinal number such that every $x \in X$ is contained in less than $\kappa$ members of $H$. Prove that there exists an $f \colon X \rightarrow \kappa$ coloring, such that every nonempty $A \in H$ has a “unique” point, that is, an element $x \in A$ such that $f(x) \neq f(y)$ for all $x \neq y \in A$. (translated by Miklós Maróti)

2024 India National Olympiad, 4

A finite set $\mathcal{S}$ of positive integers is called cardinal if $\mathcal{S}$ contains the integer $|\mathcal{S}|$ where $|\mathcal{S}|$ denotes the number of distinct elements in $\mathcal{S}$. Let $f$ be a function from the set of positive integers to itself such that for any cardinal set $\mathcal{S}$, the set $f(\mathcal{S})$ is also cardinal. Here $f(\mathcal{S})$ denotes the set of all integers that can be expressed as $f(a)$ where $a \in \mathcal{S}$. Find all possible values of $f(2024)$ $\quad$ Proposed by Sutanay Bhattacharya

1989 IMO Longlists, 17

Let $ a \in \mathbb{R}, 0 < a < 1,$ and $ f$ a continuous function on $ [0, 1]$ satisfying $ f(0) \equal{} 0, f(1) \equal{} 1,$ and \[ f \left( \frac{x\plus{}y}{2} \right) \equal{} (1\minus{}a) f(x) \plus{} a f(y) \quad \forall x,y \in [0,1] \text{ with } x \leq y.\] Determine $ f \left( \frac{1}{7} \right).$

2012 European Mathematical Cup, 2

Let $S$ be the set of positive integers. For any $a$ and $b$ in the set we have $GCD(a, b)>1$. For any $a$, $b$ and $c$ in the set we have $GCD(a, b, c)=1$. Is it possible that $S$ has $2012$ elements? [i]Proposed by Ognjen Stipetić.[/i]

2014 Online Math Open Problems, 25

If \[ \sum_{n=1}^{\infty}\frac{\frac11 + \frac12 + \dots + \frac 1n}{\binom{n+100}{100}} = \frac pq \] for relatively prime positive integers $p,q$, find $p+q$. [i]Proposed by Michael Kural[/i]