Found problems: 4776
2013 AMC 12/AHSME, 25
Let $f : \mathbb{C} \to \mathbb{C} $ be defined by $ f(z) = z^2 + iz + 1 $. How many complex numbers $z $ are there such that $ \text{Im}(z) > 0 $ and both the real and the imaginary parts of $f(z)$ are integers with absolute value at most $ 10 $?
${ \textbf{(A)} \ 399 \qquad \textbf{(B)} \ 401 \qquad \textbf{(C)} \ 413 \qquad \textbf{(D}} \ 431 \qquad \textbf{(E)} \ 441 $
1996 IMO Shortlist, 4
Let $ a_{1}, a_{2}...a_{n}$ be non-negative reals, not all zero. Show that that
(a) The polynomial $ p(x) \equal{} x^{n} \minus{} a_{1}x^{n \minus{} 1} \plus{} ... \minus{} a_{n \minus{} 1}x \minus{} a_{n}$ has preceisely 1 positive real root $ R$.
(b) let $ A \equal{} \sum_{i \equal{} 1}^n a_{i}$ and $ B \equal{} \sum_{i \equal{} 1}^n ia_{i}$. Show that $ A^{A} \leq R^{B}$.
2014 Taiwan TST Round 2, 1
Let $a_i > 0$ for $i=1,2,\dots,n$ and suppose $a_1 + a_2 + \dots + a_n = 1$. Prove that for any positive integer $k$,
\[ \left( a_1^k + \frac{1}{a_1^k} \right) \left( a_2^k + \frac{1}{a_2^k} \right) \dots \left( a_n^k + \frac{1}{a_n^k} \right) \ge \left( n^k + \frac{1}{n^k} \right)^n. \]
2008 Macedonia National Olympiad, 2
Positive numbers $ a$, $ b$, $ c$ are such that $ \left(a \plus{} b\right)\left(b \plus{} c\right)\left(c \plus{} a\right) \equal{} 8$. Prove the inequality
\[ \frac {a \plus{} b \plus{} c}{3}\ge\sqrt [27]{\frac {a^3 \plus{} b^3 \plus{} c^3}{3}}
\]
2010 Contests, 2
Positive rational number $a$ and $b$ satisfy the equality
\[a^3 + 4a^2b = 4a^2 + b^4.\]
Prove that the number $\sqrt{a}-1$ is a square of a rational number.
2001 China Team Selection Test, 3
For a given natural number $k > 1$, find all functions $f:\mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$, $f[x^k + f(y)] = y +[f(x)]^k$.
2009 BMO TST, 3
For the give functions in $\mathbb{N}$:
[b](a)[/b] Euler's $\phi$ function ($\phi(n)$- the number of natural numbers smaller than $n$ and coprime with $n$);
[b](b)[/b] the $\sigma$ function such that the $\sigma(n)$ is the sum of natural divisors of $n$.
solve the equation $\phi(\sigma(2^x))=2^x$.
2016 CMIMC, 10
Let $f:\mathbb{N}\mapsto\mathbb{R}$ be the function \[f(n)=\sum_{k=1}^\infty\dfrac{1}{\operatorname{lcm}(k,n)^2}.\] It is well-known that $f(1)=\tfrac{\pi^2}6$. What is the smallest positive integer $m$ such that $m\cdot f(10)$ is the square of a rational multiple of $\pi$?
2011 Morocco National Olympiad, 3
Find all functions $f : \mathbb{R} \to \mathbb{R} $ which verify the relation
\[(x-2)f(y)+f(y+2f(x))= f(x+yf(x)), \qquad \forall x,y \in \mathbb R.\]
2008 Romania National Olympiad, 1
Let $ a>0$ and $ f: [0,\infty) \to [0,a]$ be a continuous function on $ (0,\infty)$ and having Darboux property on $ [0,\infty)$. Prove that if $ f(0)\equal{}0$ and for all nonnegative $ x$ we have
\[ xf(x) \geq \int^x_0 f(t) dt ,\] then $ f$ admits primitives on $ [0,\infty)$.
2011 Canadian Mathematical Olympiad Qualification Repechage, 5
Each vertex of a regular $11$-gon is colored black or gold. All possible triangles are formed using these vertices. Prove that there are either two congruent triangles with three black vertices or two congruent triangles with three gold vertices.
2022 Thailand Mathematical Olympiad, 5
Determine all functions $f:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ that satisfies the equation
$$f\left(\frac{x+y+z}{3},\frac{a+b+c}{3}\right)=f(x,a)f(y,b)f(z,c)$$
for any real numbers $x,y,z,a,b,c$ such that $az+bx+cy\neq ay+bz+cx$.
2000 France Team Selection Test, 2
A function from the positive integers to the positive integers satisfies these properties
1. $f(ab)=f(a)f(b)$ for any two coprime positive integers $a,b$.
2. $f(p+q)=f(p)+f(q)$ for any two primes $p,q$.
Prove that $f(2)=2, f(3)=3, f(1999)=1999$.
2012 Belarus Team Selection Test, 2
Determine all pairs $(f,g)$ of functions from the set of real numbers to itself that satisfy \[g(f(x+y)) = f(x) + (2x + y)g(y)\] for all real numbers $x$ and $y$.
[i]Proposed by Japan[/i]
2007 Nicolae Coculescu, 4
Prove that there exists a nonconstant function $ f:\mathbb{R}^2\longrightarrow\mathbb{R} $ verifying the following system of relations:
$$ \left\{ \begin{matrix} f(x,x+y)=f(x,y) ,& \quad \forall x,y\in\mathbb{R} \\f(x,y+z)=f(x,y) +f(x,z) ,& \quad \forall x,y\in\mathbb{R} \end{matrix} \right. $$
2003 Poland - Second Round, 6
Each pair $(x, y)$ of nonnegative integers is assigned number $f(x, y)$ according the conditions:
$f(0, 0) = 0$;
$f(2x, 2y) = f(2x + 1, 2y + 1) = f(x, y)$,
$f(2x + 1, 2y) = f(2x, 2y + 1) = f(x ,y) + 1$ for $x, y \ge 0$.
Let $n$ be a fixed nonnegative integer and let $a$, $b$ be nonnegative integers such that $f(a, b) = n$. Decide how many numbers satisfy the equation $f(a, x) + f(b, x) = n$.
2002 Singapore Senior Math Olympiad, 1
Let $f: N \to N$ be a function satisfying the following:
$\bullet$ $f(ab) = f(a)f(b)$, whenever the greatest common divisor of $a$ and $b$ is $1$.
$\bullet$ $f(p + q) = f(p)+ f(q)$ whenever $p$ and $q$ are primes.
Determine all possible values of $f(2002)$. Justify your answers.
2018 CMIMC Individual Finals, 3
For $n\in\mathbb N$, let $x$ be the solution of $x^x=n$. Find the asymptotics of $x$, i.e., express $x=\Theta(f(n))$ for some suitable explicit function of $n$.
1998 Romania Team Selection Test, 1
A word of length $n$ is an ordered sequence $x_1x_2\ldots x_n$ where $x_i$ is a letter from the set $\{ a,b,c \}$. Denote by $A_n$ the set of words of length $n$ which do not contain any block $x_ix_{i+1}, i=1,2,\ldots ,n-1,$ of the form $aa$ or $bb$ and by $B_n$ the set of words of length $n$ in which none of the subsequences $x_ix_{i+1}x_{i+2}, i=1,2,\ldots n-2,$ contains all the letters $a,b,c$.
Prove that $|B_{n+1}|=3|A_n|$.
[i]Vasile Pop[/i]
1970 Putnam, A1
Show that the power series for the function
$$e^{ax} \cos bx,$$
where $a,b >0$, has either no zero coefficients or infinitely many zero coefficients.
2012 Balkan MO, 2
Prove that
\[\sum_{cyc}(x+y)\sqrt{(z+x)(z+y)} \geq 4(xy+yz+zx),\]
for all positive real numbers $x,y$ and $z$.
1963 Miklós Schweitzer, 5
Let $ H$ be a set of real numbers that does not consist of $ 0$ alone and is closed under addition. Further, let $ f(x)$ be a
real-valued function defined on $ H$ and satisfying the following conditions: \[ \;f(x)\leq f(y)\ \mathrm{if} \;x \leq y\] and \[ f(x\plus{}y)\equal{}f(x)\plus{}f(y) \;(x,y \in H)\ .\] Prove that $ f(x)\equal{}cx$ on $ H$, where $ c$ is a nonnegative number. [M. Hosszu, R. Borges]
1990 National High School Mathematics League, 13
$a,b$ are positive integers, $a>b$. $\sin\theta=\frac{2ab}{a^2+b^2}(0<\theta<\frac{\pi}{2})$. If $A_n=(a^2+b^2)\sin n\theta$, prove that $A_n$ is an integer for all $n\in\mathbb{Z}_+$
2018 Korea USCM, 3
$\Phi$ is a function defined on collection of bounded measurable subsets of $\mathbb{R}$ defined as
$$\Phi(S) = \iint_S (1-5x^2 + 4xy-5y^2 ) dx dy$$
Find the maximum value of $\Phi$.
2021-IMOC qualification, A0
Consider the following function $ f(x)=\frac{1}{1+2^{1-2x}}$. Compute the value of $$f\left(\frac{1}{10}\right)+f\left(\frac{2}{10}\right)+...+f\left(\frac{9}{10}\right).$$