This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2011 China Team Selection Test, 2

Let $n$ be a positive integer and let $\alpha_n $ be the number of $1$'s within binary representation of $n$. Show that for all positive integers $r$, \[2^{2n-\alpha_n}\phantom{-1} \bigg|^{\phantom{0}}_{\phantom{-1}} \sum_{k=-n}^{n} \binom{2n}{n+k} k^{2r}.\]

2021 Belarusian National Olympiad, 8.5

Tags: function , algebra
Let $f(x)$ be a linear function and $k,l,m$ - pairwise different real numbers. It is known that $f(k)=l^3+m^3$, $f(l)=m^3+k^3$ and $f(m)=k^3+l^3$. Find the value of $k+l+m$.

2012 Today's Calculation Of Integral, 789

Find the non-constant function $f(x)$ such that $f(x)=x^2-\int_0^1 (f(t)+x)^2dt.$

2006 Germany Team Selection Test, 1

We denote by $\mathbb{R}^\plus{}$ the set of all positive real numbers. Find all functions $f: \mathbb R^ \plus{} \rightarrow\mathbb R^ \plus{}$ which have the property: \[f(x)f(y)\equal{}2f(x\plus{}yf(x))\] for all positive real numbers $x$ and $y$. [i]Proposed by Nikolai Nikolov, Bulgaria[/i]

1997 Romania National Olympiad, 3

Suppose that $a,b,c,d\in\mathbb{R}$ and $f(x)=ax^3+bx^2+cx+d$ such that $f(2)+f(5)<7<f(3)+f(4)$. Prove that there exists $u,v\in\mathbb{R}$ such that $u+v=7 , f(u)+f(v)=7$

2008 China Western Mathematical Olympiad, 2

In triangle $ ABC$, $ AB\equal{}AC$, the inscribed circle $ I$ touches $ BC, CA, AB$ at points $ D,E$ and $ F$ respectively. $ P$ is a point on arc $ EF$ opposite $ D$. Line $ BP$ intersects circle $ I$ at another point $ Q$, lines $ EP$, $ EQ$ meet line $ BC$ at $ M, N$ respectively. Prove that (1) $ P, F, B, M$ concyclic (2)$ \frac{EM}{EN} \equal{} \frac{BD}{BP}$ (P.S. Can anyone help me with using GeoGebra, the incircle function of the plugin doesn't work with my computer.)

1986 Traian Lălescu, 2.3

Let $ f:[0,2]\longrightarrow \mathbb{R} $ a differentiable function having a continuous derivative and satisfying $ f(0)=f(2)=1 $ and $ |f’|\le 1. $ Show that $$ \left| \int_0^2 f(t) dt\right| >1. $$

1988 India National Olympiad, 4

If $ a$ and $ b$ are positive and $ a \plus{} b \equal{} 1$, prove that \[ \left(a\plus{}\frac{1}{a}\right)^2\plus{}\left(b\plus{}\frac{1}{b}\right)^2 \geq \frac{25}{2}\]

2008 Gheorghe Vranceanu, 1

Find the $ \mathcal{C}^1 $ class functions $ f:[0,1]\longrightarrow\mathbb{R} $ satisfying the following three clauses: $ \text{(i) } f(0)=0 $ $ \text{(ii) } \text{Im} f'\subset (0,1] $ $ \text{(iii) }F(1)-\frac{\left( f(1) \right)^3}{3} =F(0)=0, $ where $ F $ is a primitive of $ f. $

2007 Purple Comet Problems, 9

Purple College keeps a careful count of its students as they progress each year from the freshman class to the sophomore class to the junior class and, finally, to the senior class. Each year at the college one third of the freshman class drops out of school, $40$ students in the sophomore class drop out of school, and one tenth of the junior class drops out of school. Given that the college only admits new freshman students, and that it wants to begin each school year with $3400$ students enrolled, how many students does it need to admit into the freshman class each year?

2007 Harvard-MIT Mathematics Tournament, 8

Let $A \text{ :}= \mathbb{Q}\setminus \{0,1\}$ denote the set of all rationals other than $0$ and $1$. A function $f:A\to \mathbb{R}$ has the property that for all $x\in A$, \[f(x)+f\left(1-\dfrac{1}{x}\right)=\log |x|.\] Compute the value of $f(2007)$.

2011 Kosovo National Mathematical Olympiad, 2

Tags: function , algebra
It is given the function $f:\left( \mathbb{R} - \{0\} \right) \times \left( \mathbb{R}-\{0\} \right) \to \mathbb{R}$ such that $f(a,b)= \left| \frac{|b-a|}{|ab|}+\frac{b+a}{ab}-1 \right|+ \frac{|b-a|}{|ab|}+ \frac{b+a}{ab}+1$ where $a,b \not=0$. Prove that: \[ f(a,b)=4 \cdot \text{max} \left\{\frac{1}{a},\frac{1}{b},\frac{1}{2} \right\}\]

2022 Taiwan TST Round 3, N

Denote the set of all positive integers by $\mathbb{N}$, and the set of all ordered positive integers by $\mathbb{N}^2$. For all non-negative integers $k$, define [i]good functions of order k[/i] recursively for all non-negative integers $k$, among all functions from $\mathbb{N}^2$ to $\mathbb{N}$ as follows: (i) The functions $f(a,b)=a$ and $f(a,b)=b$ are both good functions of order $0$. (ii) If $f(a,b)$ and $g(a,b)$ are good functions of orders $p$ and $q$, respectively, then $\gcd(f(a,b),g(a,b))$ is a good function of order $p+q$, while $f(a,b)g(a,b)$ is a good function of order $p+q+1$. Prove that, if $f(a,b)$ is a good function of order $k\leq \binom{n}{3}$ for some positive integer $n\geq 3$, then there exist a positive integer $t\leq \binom{n}{2}$ and $t$ pairs of non-negative integers $(x_1,y_1),\ldots,(x_n,y_n)$ such that $$f(a,b)=\gcd(a^{x_1}b^{y_1},\ldots,a^{x_t}b^{y_t})$$ holds for all positive integers $a$ and $b$. [i]Proposed by usjl[/i]

2016 Nigerian Senior MO Round 2, Problem 2

$PQ$ is a diameter of a circle. $PR$ and $QS$ are chords with intersection at $T$. If $\angle PTQ= \theta$, determine the ratio of the area of $\triangle QTP$ to the area of $\triangle SRT$ (i.e. area of $\triangle QTP$/area of $\triangle SRT$) in terms of trigonometric functions of $\theta$

STEMS 2021 Math Cat A, Q2

Suppose $f: \mathbb{R}^{+} \mapsto \mathbb{R}^{+}$ is a function such that $\frac{f(x)}{x}$ is increasing on $\mathbb{R}^{+}$. For $a,b,c>0$, prove that $$2\left (\frac{f(a)+f(b)}{a+b} + \frac{f(b)+f(c)}{b+c}+ \frac{f(c)+f(a)}{c+a} \right) \geq 3\left(\frac{f(a)+f(b)+f(c)}{a+b+c}\right) + \frac{f(a)}{a}+ \frac{f(b)}{b}+ \frac{f(c)}{c}$$

2018 Peru IMO TST, 5

Let $d$ be a positive integer. The seqeunce $a_1, a_2, a_3,...$ of positive integers is defined by $a_1 = 1$ and $a_{n + 1} = n\left \lfloor \frac{a_n}{n} \right \rfloor+ d$ for $n = 1,2,3, ...$ . Prove that there exists a positive integer $N$ so that the terms $a_N,a_{N + 1}, a_{N + 2},...$ form an arithmetic progression. Note: If $x$ is a real number, $\left \lfloor x \right \rfloor $ denotes the largest integer that is less than or equal to $x$.

2011 Laurențiu Duican, 1

Tags: function , algebra
Let $ A $ be a nonempty set of real numbers, and let be two functions $ f,g:A\longrightarrow A $ having the following properties: $ \text{(i)} f $ is increasing $ \text{(ii)} f-g $ is nonpositive everywhere $ \text{(iii)} f(A)\subset g(A) $ [b]a)[/b] Prove that $ f=g $ if $ A $ is the set of all nonnegative integers. [b]b)[/b] Is true that $ f=g $ if $ A $ is the set of all integers? [i]Dorel Miheț[/i]

2012 Harvard-MIT Mathematics Tournament, 9

How many real triples $(a,b,c)$ are there such that the polynomial $p(x)=x^4+ax^3+bx^2+ax+c$ has exactly three distinct roots, which are equal to $\tan y$, $\tan 2y$, and $\tan 3y$ for some real number $y$?

2007 Hungary-Israel Binational, 3

Let $ AB$ be the diameter of a given circle with radius $ 1$ unit, and let $ P$ be a given point on $ AB$. A line through $ P$ meets the circle at points $ C$ and $ D$, so a convex quadrilateral $ ABCD$ is formed. Find the maximum possible area of the quadrilateral.

2008 Mongolia Team Selection Test, 1

Find all function $ f: R^\plus{} \rightarrow R^\plus{}$ such that for any $ x,y,z \in R^\plus{}$ such that $ x\plus{}y \ge z$ , $ f(x\plus{}y\minus{}z) \plus{}f(2\sqrt{xz})\plus{}f(2\sqrt{yz}) \equal{} f(x\plus{}y\plus{}z)$

2006 Victor Vâlcovici, 1

Let be an even natural number $ n $ and a function $ f:[0,\infty )\longrightarrow\mathbb{R} $ defined as $$ f(x)=\int_0^x \prod_{k=0}^n (s-k) ds. $$ Show that [b]a)[/b] $ f(n)=0. $ [b]b)[/b] $ f $ is globally nonnegative. [i]Gheorghe Grigore[/i]

2022 ISI Entrance Examination, 2

Consider the function $$f(x)=\sum_{k=1}^{m}(x-k)^{4}~, \qquad~ x \in \mathbb{R}$$ where $m>1$ is an integer. Show that $f$ has a unique minimum and find the point where the minimum is attained.

1970 AMC 12/AHSME, 5

Tags: function
If $f(x)=\dfrac{x^4+x^2}{x+1}$, then $f(i)$, where $i=\sqrt{-1}$, is equal to: $\textbf{(A) }1+i\qquad\textbf{(B) }1\qquad\textbf{(C) }-1\qquad\textbf{(D) }0\qquad \textbf{(E) }-1-i$

1991 IMO Shortlist, 23

Let $ f$ and $ g$ be two integer-valued functions defined on the set of all integers such that [i](a)[/i] $ f(m \plus{} f(f(n))) \equal{} \minus{}f(f(m\plus{} 1) \minus{} n$ for all integers $ m$ and $ n;$ [i](b)[/i] $ g$ is a polynomial function with integer coefficients and g(n) = $ g(f(n))$ $ \forall n \in \mathbb{Z}.$

2010 Contests, 524

Evaluate the following definite integral. \[ 2^{2009}\frac {\int_0^1 x^{1004}(1 \minus{} x)^{1004}\ dx}{\int_0^1 x^{1004}(1 \minus{} x^{2010})^{1004}\ dx}\]