This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2007 Balkan MO Shortlist, A5

Tags: function , algebra
find all the function $f,g:R\rightarrow R$ such that (1)for every $x,y\in R$ we have $f(xg(y+1))+y=xf(y)+f(x+g(y))$ (2)$f(0)+g(0)=0$

2004 Romania National Olympiad, 2

Let $P(n)$ be the number of functions $f: \mathbb{R} \to \mathbb{R}$, $f(x)=a x^2 + b x + c$, with $a,b,c \in \{1,2,\ldots,n\}$ and that have the property that $f(x)=0$ has only integer solutions. Prove that $n<P(n)<n^2$, for all $n \geq 4$. [i]Laurentiu Panaitopol[/i]

2012 India PRMO, 15

How many non-negative integral values of $x$ satisfy the equation $ \lfloor \frac{x}{5}\rfloor = \lfloor \frac{x}{7}\rfloor $

2000 Vietnam Team Selection Test, 2

Tags: algebra , function
Let $a > 1$ and $r > 1$ be real numbers. (a) Prove that if $f : \mathbb{R}^{+}\to\mathbb{ R}^{+}$ is a function satisfying the conditions (i) $f (x)^{2}\leq ax^{r}f (\frac{x}{a})$ for all $x > 0$, (ii) $f (x) < 2^{2000}$ for all $x < \frac{1}{2^{2000}}$, then $f (x) \leq x^{r}a^{1-r}$ for all $x > 0$. (b) Construct a function $f : \mathbb{R}^{+}\to\mathbb{ R}^{+}$ satisfying condition (i) such that for all $x > 0, f (x) > x^{r}a^{1-r}$ .

1959 AMC 12/AHSME, 29

Tags: function , algebra
On a examination of $n$ questions a student answers correctly $15$ of the first $20$. Of the remaining questions he answers one third correctly. All the questions have the same credit. If the student's mark is $50\%$, how many different values of $n$ can there be? $ \textbf{(A)}\ 4 \qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 1\qquad\textbf{(E)}\ \text{the problem cannot be solved} $

2022 Francophone Mathematical Olympiad, 1

find all functions $f:\mathbb{Z} \to \mathbb{Z} $ such that $f(m+n)+f(m)f(n)=n^2(f(m)+1)+m^2(f(n)+1)+mn(2-mn)$ holds for all $m,n \in \mathbb{Z}$

1999 Italy TST, 3

Tags: function , algebra
(a) Find all strictly monotone functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[f(x+f(y))=f(x)+y\quad\text{for all real}\ x,y. \] (b) If $n>1$ is an integer, prove that there is no strictly monotone function $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[ f(x+f(y))=f(x)+y^n\quad \text{for all real}\ x, y.\]

2023 Brazil Undergrad MO, 1

Let $p$ be the [i]potentioral[/i] function, from positive integers to positive integers, defined by $p(1) = 1$ and $p(n + 1) = p(n)$, if $n + 1$ is not a perfect power and $p(n + 1) = (n + 1) \cdot p(n)$, otherwise. Is there a positive integer $N$ such that, for all $n > N,$ $p(n) > 2^n$?

2024 Middle European Mathematical Olympiad, 1

Let $\mathbb{N}_0$ denote the set of non-negative integers. Determine all non-negative integers $k$ for which there exists a function $f: \mathbb{N}_0 \to \mathbb{N}_0$ such that $f(2024) = k$ and $f(f(n)) \leq f(n+1) - f(n)$ for all non-negative integers $n$.

2002 Romania National Olympiad, 4

Tags: function , algebra
Let $f:[0,1]\rightarrow [0,1]$ be a continuous and bijective function. Describe the set: \[A=\{f(x)-f(y)\mid x,y\in[0,1]\backslash\mathbb{Q}\}\] [hide="Note"] You are given the result that [i]there is no one-to-one function between the irrational numbers and $\mathbb{Q}$.[/i][/hide]

2002 VJIMC, Problem 1

Differentiable functions $f_1,\ldots,f_n:\mathbb R\to\mathbb R$ are linearly independent. Prove that there exist at least $n-1$ linearly independent functions among $f_1',\ldots,f_n'$.

2013 Federal Competition For Advanced Students, Part 1, 2

Solve the following system of equations in rational numbers: \[ (x^2+1)^3=y+1,\\ (y^2+1)^3=z+1,\\ (z^2+1)^3=x+1.\]

1981 AMC 12/AHSME, 18

The number of real solutions to the equation \[ \frac{x}{100} = \sin x \] is $\text{(A)} \ 61 \qquad \text{(B)} \ 62 \qquad \text{(C)} \ 63 \qquad \text{(D)} \ 64 \qquad \text{(E)} \ 65$

2013 Putnam, 4

For any continuous real-valued function $f$ defined on the interval $[0,1],$ let \[\mu(f)=\int_0^1f(x)\,dx,\text{Var}(f)=\int_0^1(f(x)-\mu(f))^2\,dx, M(f)=\max_{0\le x\le 1}|f(x)|.\] Show that if $f$ and $g$ are continuous real-valued functions defined on the interval $[0,1],$ then \[\text{Var}(fg)\le 2\text{Var}(f)M(g)^2+2\text{Var}(g)M(f)^2.\]

2021 Romania Team Selection Test, 4

Tags: function , algebra
Determine all functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy the following relationship for all real numbers $x$ and $y$\[f(xf(y)-f(x))=2f(x)+xy.\]

2005 MOP Homework, 3

In a television series about incidents in a conspicuous town there are $n$ citizens staging in it, where $n$ is an integer greater than $3$. Each two citizens plan together a conspiracy against one of the other citizens. Prove that there exists a citizen, against whom at least $\sqrt{n}$ other citizens are involved in the conspiracy.

2002 District Olympiad, 3

a)Find a matrix $A\in \mathcal{M}_3(\mathbb{C})$ such that $A^2\neq O_3$ and $A^3=O_3$. b)Let $n,p\in\{2,3\}$. Prove that if there is bijective function $f:\mathcal{M}_n(\mathbb{C})\rightarrow \mathcal{M}_p(\mathbb{C})$ such that $f(XY)=f(X)f(Y),\ \forall X,Y\in \mathcal{M}_n(\mathbb{C})$, then $n=p$. [i]Ion Savu[/i]

2007 China Second Round Olympiad, 3

For positive integers $k,m$, where $1\le k\le 5$, define the function $f(m,k)$ as \[f(m,k)=\sum_{i=1}^{5}\left[m\sqrt{\frac{k+1}{i+1}}\right]\] where $[x]$ denotes the greatest integer not exceeding $x$. Prove that for any positive integer $n$, there exist positive integers $k,m$, where $1\le k\le 5$, such that $f(m,k)=n$.

1991 Austrian-Polish Competition, 7

Tags: function , algebra , max
For a given positive integer $n$ determine the maximum value of the function $f (x) = \frac{x + x^2 +...+ x^{2n-1}}{(1 + x^n)^2}$ over all $x \ge 0$ and find all positive $x$ for which the maximum is attained.

1993 All-Russian Olympiad, 4

Thirty people sit at a round table. Each of them is either smart or dumb. Each of them is asked: "Is your neighbor to the right smart or dumb?" A smart person always answers correctly, while a dumb person can answer both correctly and incorrectly. It is known that the number of dumb people does not exceed $F$. What is the largest possible value of $F$ such that knowing what the answers of the people are, you can point at at least one person, knowing he is smart?

1967 IMO Shortlist, 5

A linear binomial $l(z) = Az + B$ with complex coefficients $A$ and $B$ is given. It is known that the maximal value of $|l(z)|$ on the segment $-1 \leq x \leq 1$ $(y = 0)$ of the real line in the complex plane $z = x + iy$ is equal to $M.$ Prove that for every $z$ \[|l(z)| \leq M \rho,\] where $\rho$ is the sum of distances from the point $P=z$ to the points $Q_1: z = 1$ and $Q_3: z = -1.$

2000 VJIMC, Problem 3

Prove that if m,n are nonnegative integers and 0<=x<=1 then $(1-x^n)^m + (1-(1-x)^m)^n \ge 1$

2020 Costa Rica - Final Round, 4

Consider the function $ h$, defined for all positive real numbers, such that: $$10x -6h(x) = 4h \left(\frac{2020}{x}\right) $$ for all $x > 0$. Find $h(x)$ and the value of $h(4)$.

2012 District Olympiad, 2

Let $ A,B\in\mathcal{M} \left( \mathbb{R} \right) $ that satisfy $ AB=O_3. $ Prove that: [b]a)[/b] The function $ f:\mathbb{C}\longrightarrow\mathbb{C} $ defined as $ f(x)=\det \left( A^2+B^2+xBA \right) $ is a polynomial one, of degree at most $ 2. $ [b]b)[/b] $ \det\left( A^2+B^2 \right)\ge 0. $

2007 Pre-Preparation Course Examination, 1

a) Find all multiplicative functions $f: \mathbb Z_{p}^{*}\longrightarrow\mathbb Z_{p}^{*}$ (i.e. that $\forall x,y\in\mathbb Z_{p}^{*}$, $f(xy)=f(x)f(y)$.) b) How many bijective multiplicative does exist on $\mathbb Z_{p}^{*}$ c) Let $A$ be set of all multiplicative functions on $\mathbb Z_{p}^{*}$, and $VB$ be set of all bijective multiplicative functions on $\mathbb Z_{p}^{*}$. For each $x\in \mathbb Z_{p}^{*}$, calculate the following sums :\[\sum_{f\in A}f(x),\ \ \sum_{f\in B}f(x)\]