Found problems: 4776
2009 Albania Team Selection Test, 2
Find all the functions $ f :\mathbb{R}\mapsto\mathbb{R} $ with the following property: $ \forall x$ $f(x)= f(x/2) + (x/2)f'(x)$
2009 IMO Shortlist, 3
Determine all functions $ f$ from the set of positive integers to the set of positive integers such that, for all positive integers $ a$ and $ b$, there exists a non-degenerate triangle with sides of lengths
\[ a, f(b) \text{ and } f(b \plus{} f(a) \minus{} 1).\]
(A triangle is non-degenerate if its vertices are not collinear.)
[i]Proposed by Bruno Le Floch, France[/i]
1986 Traian Lălescu, 2.1
Let be a nonnegative integer $ n. $ Find all continuous functions $ f:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R} $ for which the following equation holds:
$$ (1+n)\int_0^x f(t) dt =nxf(x) ,\quad\forall x>0. $$
2012 Finnish National High School Mathematics Competition, 5
The [i]Collatz's function[i] is a mapping $f:\mathbb{Z}_+\to\mathbb{Z}_+$ satisfying \[
f(x)=\begin{cases}
3x+1,& \mbox{as }x\mbox{ is odd}\\
x/2, & \mbox{as }x\mbox{ is even.}\\
\end{cases}
\] In addition, let us define the notation $f^1=f$ and inductively $f^{k+1}=f\circ f^k,$ or to say in another words, $f^k(x)=\underbrace{f(\ldots (f}_{k\text{ times}}(x)\ldots ).$
Prove that there is an $x\in\mathbb{Z}_+$ satisfying \[f^{40}(x)> 2012x.\]
2007 JBMO Shortlist, 1
Let $a$ be positive real number such that $a^{3}=6(a+1)$. Prove that the equation $x^{2}+ax+a^{2}-6=0$ has no real solution.
2008 Croatia Team Selection Test, 2
For which $ n\in \mathbb{N}$ do there exist rational numbers $ a,b$ which are not integers such that both $ a \plus{} b$ and $ a^n \plus{} b^n$ are integers?
1973 Bulgaria National Olympiad, Problem 4
Find all functions $f(x)$ defined in the range $\left(-\frac\pi2,\frac\pi2\right)$ that are differentiable at $0$ and satisfy
$$f(x)=\frac12\left(1+\frac1{\cos x}\right)f\left(\frac x2\right)$$
for every $x$ in the range $\left(-\frac\pi2,\frac\pi2\right)$.
[i]L. Davidov[/i]
2001 Korea - Final Round, 1
Given an odd prime $p$, find all functions $f:Z \rightarrow Z$ satisfying the following two conditions:
(i) $f(m)=f(n)$ for all $m,n \in Z$ such that $m\equiv n\pmod p$;
(ii) $f(mn)=f(m)f(n)$ for all $m,n \in Z$.
2008 Putnam, B5
Find all continuously differentiable functions $ f: \mathbb{R}\to\mathbb{R}$ such that for every rational number $ q,$ the number $ f(q)$ is rational and has the same denominator as $ q.$ (The denominator of a rational number $ q$ is the unique positive integer $ b$ such that $ q\equal{}a/b$ for some integer $ a$ with $ \gcd(a,b)\equal{}1.$) (Note: $ \gcd$ means greatest common divisor.)
2014 Contests, 1
Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such that
\[ xf(y) + f(xf(y)) - xf(f(y)) - f(xy) = 2x + f(y) - f(x+y)\]
holds for all $x,y \in \mathbb{R}$.
2000 Moldova National Olympiad, Problem 4
Let $f:[0,1]\to\mathbb R$ be a continuous function such that $\int^1_0x^mf(x)dx=0$ for $m=0,1,\ldots,1999$. Prove that $f$ has at least $2000$ zeroes on the segment $[0,1]$.
2005 Turkey Team Selection Test, 1
Find all functions $ f :\mathbb{R}_{0}^{+}\mapsto\mathbb{R}_{0}^{+} $ satisfying the conditions $4f(x)\geq 3x$ and $f(4f(x)-3x)=x$ for all $x\geq 0$ .
2002 Romania National Olympiad, 4
Find all functions $f: \mathbb{N}\to\mathbb{N}$ which satisfy the inequality:
\[f(3x+2y)=f(x)f(y)\]
for all non-negative integers $x,y$.
2024 Switzerland - Final Round, 6
Let $\mathbb{R}$ be the set of real numbers. Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function such that \[f(x+y)f(x-y)\geqslant f(x)^2-f(y)^2\] for every $x,y\in\mathbb{R}$. Assume that the inequality is strict for some $x_0,y_0\in\mathbb{R}$.
Prove that either $f(x)\geqslant 0$ for every $x\in\mathbb{R}$ or $f(x)\leqslant 0$ for every $x\in\mathbb{R}$.
2020 Serbian Mathematical Olympiad, Problem 5
For a natural number $n$, with $v_2(n)$ we denote the largest integer $k\geq0$ such that $2^k|n$. Let us assume that the function $f\colon\mathbb{N}\to\mathbb{N}$ meets the conditions:
$(i)$ $f(x)\leq3x$ for all natural numbers $x\in\mathbb{N}$.
$(ii)$ $v_2(f(x)+f(y))=v_2(x+y)$ for all natural numbers $x,y\in\mathbb{N}$.
Prove that for every natural number $a$ there exists exactly one natural number $x$ such that $f(x)=3a$.
1970 IMO Longlists, 28
A set $G$ with elements $u,v,w...$ is a Group if the following conditions are fulfilled:
$(\text{i})$ There is a binary operation $\circ$ defined on $G$ such that $\forall \{u,v\}\in G$ there is a $w\in G$ with $u\circ v = w$.
$(\text{ii})$ This operation is associative; i.e. $(u\circ v)\circ w = u\circ (v\circ w)$ $\forall\{u,v,w\}\in G$.
$(\text{iii})$ $\forall \{u,v\}\in G$, there exists an element $x\in G$ such that $u\circ x = v$, and an element $y\in G$ such that $y\circ u = v$.
Let $K$ be a set of all real numbers greater than $1$. On $K$ is defined an operation by $ a\circ b = ab-\sqrt{(a^2-1)(b^2-1)}$. Prove that $K$ is a Group.
2010 Contests, 2
In the accompanying figure , $y=f(x)$ is the graph of a one-to-one continuous function $f$ . At each point $P$ on the graph of $y=2x^2$ , assume that the areas $OAP$ and $OBP$ are equal . Here $PA,PB$ are the horizontal and vertical segments . Determine the function $f$.
[asy]
Label f;
xaxis(0,60,blue);
yaxis(0,60,blue);
real f(real x)
{
return (x^2)/60;
}
draw(graph(f,0,53),red);
label("$y=x^2$",(30,15),E);
real f(real x)
{
return (x^2)/25;
}
draw(graph(f,0,38),red);
label("$y=2x^2$",(37,37^2/25),E);
real f(real x)
{
return (x^2)/10;
}
draw(graph(f,0,25),red);
label("$y=f(x)$",(24,576/10),W);
label("$O(0,0)$",(0,0),S);
dot((20,400/25));
dot((20,400/60));
label("$P$",(20,400/25),E);
label("$B$",(20,400/60),SE);
dot(((4000/25)^(0.5),400/25));
label("$A$",((4000/25)^(0.5),400/25),W);
draw((20,400/25)..((4000/25)^(0.5),400/25));
draw((20,400/25)..(20,400/60));
[/asy]
2012 APMO, 5
Let $ n $ be an integer greater than or equal to $ 2 $. Prove that if the real numbers $ a_1 , a_2 , \cdots , a_n $ satisfy $ a_1 ^2 + a_2 ^2 + \cdots + a_n ^ 2 = n $, then
\[\sum_{1 \le i < j \le n} \frac{1}{n- a_i a_j} \le \frac{n}{2} \]
must hold.
2007 District Olympiad, 3
Find all continuous functions $f : \mathbb R \to \mathbb R$ such that:
(a) $\lim_{x \to \infty}f(x)$ exists;
(b) $f(x) = \int_{x+1}^{x+2}f(t) \, dt$, for all $x \in \mathbb R$.
2001 CentroAmerican, 2
Let $ a,b$ and $ c$ real numbers such that the equation $ ax^2\plus{}bx\plus{}c\equal{}0$ has two distinct real solutions $ p_1,p_2$ and the equation $ cx^2\plus{}bx\plus{}a\equal{}0$ has two distinct real solutions $ q_1,q_2$. We know that the numbers $ p_1,q_1,p_2,q_2$ in that order, form an arithmetic progression. Show that $ a\plus{}c\equal{}0$.
2005 Taiwan TST Round 3, 1
Find all functions $ f: \mathbb{N^{*}}\to \mathbb{N^{*}}$ satisfying
\[ \left(f^{2}\left(m\right)+f\left(n\right)\right) \mid \left(m^{2}+n\right)^{2}\]
for any two positive integers $ m$ and $ n$.
[i]Remark.[/i] The abbreviation $ \mathbb{N^{*}}$ stands for the set of all positive integers:
$ \mathbb{N^{*}}=\left\{1,2,3,...\right\}$.
By $ f^{2}\left(m\right)$, we mean $ \left(f\left(m\right)\right)^{2}$ (and not $ f\left(f\left(m\right)\right)$).
[i]Proposed by Mohsen Jamali, Iran[/i]
1990 IMO Longlists, 6
Let function $f : \mathbb Z_{\geq 0}^0 \to \mathbb N$ satisfy the following conditions:
(i) $ f(0, 0, 0) = 1;$
(ii) $f(x, y, z) = f(x - 1, y, z) + f(x, y - 1, z) + f(x, y, z - 1);$
(iii) when applying above relation iteratively, if any of $x', y', z$' is negative, then $f(x', y', z') = 0.$
Prove that if $x, y, z$ are the side lengths of a triangle, then $\frac{\left(f(x,y,z) \right) ^k}{ f(mx ,my, mz)}$ is not an integer for any integers $k, m > 1.$
1976 Spain Mathematical Olympiad, 8
Given the function $$y =|x^2 - 4x + 3|.$$
Study its continuity and differentiability at the point of abscissa $1$. Its graph determines with the $X$ axis a closed figure. Determine the area of said figure.
2012 Online Math Open Problems, 23
For reals $x\ge3$, let $f(x)$ denote the function
\[f(x) = \frac {-x + x\sqrt{4x-3} } { 2} .\]Let $a_1, a_2, \ldots$, be the sequence satisfying $a_1 > 3$, $a_{2013} = 2013$, and for $n=1,2,\ldots,2012$, $a_{n+1} = f(a_n)$. Determine the value of
\[a_1 + \sum_{i=1}^{2012} \frac{a_{i+1}^3} {a_i^2 + a_ia_{i+1} + a_{i+1}^2} .\]
[i]Ray Li.[/i]
2014 PUMaC Algebra A, 3
A function $f$ has its domain equal to the set of integers $0$, $1$, $\ldots$, $11$, and $f(n)\geq 0$ for all such $n$, and $f$ satisfies
[list]
[*]$f(0)=0$
[*]$f(6)=1$
[*]If $x\geq 0$, $y\geq 0$, and $x+y\leq 11$, then $f(x+y)=\tfrac{f(x)+f(y)}{1-f(x)f(y)}$.[/list]
Find $f(2)^2+f(10)^2$.