Found problems: 4776
2008 Germany Team Selection Test, 3
Find all surjective functions $ f: \mathbb{N} \to \mathbb{N}$ such that for every $ m,n \in \mathbb{N}$ and every prime $ p,$ the number $ f(m + n)$ is divisible by $ p$ if and only if $ f(m) + f(n)$ is divisible by $ p$.
[i]Author: Mohsen Jamaali and Nima Ahmadi Pour Anari, Iran[/i]
1964 Miklós Schweitzer, 7
Find all linear homogeneous differential equations with continuous coefficients (on the whole real line) such that for any solution $ f(t)$ and any real number $ c,f(t\plus{}c)$ is also a solution.
2009 Putnam, B2
A game involves jumping to the right on the real number line. If $ a$ and $ b$ are real numbers and $ b>a,$ the cost of jumping from $ a$ to $ b$ is $ b^3\minus{}ab^2.$ For what real numbers $ c$ can one travel from $ 0$ to $ 1$ in a finite number of jumps with total cost exactly $ c?$
1999 Poland - Second Round, 5
Let $S = \{1,2,3,4,5\}$. Find the number of functions $f : S \to S$ such that $f ^{50}(x)= x$ for all $x \in S$.
2007 Today's Calculation Of Integral, 229
Find $ \lim_{a\rightarrow \plus{} \infty} \frac {\int_0^a \sin ^ 4 x\ dx}{a}$.
2010 AMC 12/AHSME, 22
Let $ ABCD$ be a cyclic quadrilateral. The side lengths of $ ABCD$ are distinct integers less than $ 15$ such that $ BC\cdot CD\equal{}AB\cdot DA$. What is the largest possible value of $ BD$?
$ \textbf{(A)}\ \sqrt{\frac{325}{2}} \qquad \textbf{(B)}\ \sqrt{185} \qquad \textbf{(C)}\ \sqrt{\frac{389}{2}} \qquad \textbf{(D)}\ \sqrt{\frac{425}{2}} \qquad \textbf{(E)}\ \sqrt{\frac{533}{2}}$
2010 Today's Calculation Of Integral, 645
Prove the following inequality.
\[\int_{-1}^1 \frac{e^x+e^{-x}}{e^{e^{e^x}}}dx<e-\frac{1}{e}\]
Own
1987 Balkan MO, 1
Let $a$ be a real number and let $f : \mathbb{R}\rightarrow \mathbb{R}$ be a function satisfying $f(0)=\frac{1}{2}$ and
\[f(x+y)=f(x)f(a-y)+f(y)f(a-x), \quad \forall x,y \in \mathbb{R}.\]
Prove that $f$ is constant.
1982 National High School Mathematics League, 5
For any$\varphi\in(0,\frac{\pi}{2})$, we have
$\text{(A)}\sin\sin\varphi<\cos\varphi<\cos\cos\varphi\qquad\text{(B)}\sin\sin\varphi>\cos\varphi>\cos\cos\varphi$
$\text{(C)}\sin\cos\varphi>\cos\varphi>\cos\sin\varphi\qquad\text{(D)}\sin\cos\varphi<\cos\varphi<\cos\sin\varphi$
2013 ELMO Shortlist, 7
Consider a function $f: \mathbb Z \to \mathbb Z$ such that for every integer $n \ge 0$, there are at most $0.001n^2$ pairs of integers $(x,y)$ for which $f(x+y) \neq f(x)+f(y)$ and $\max\{ \lvert x \rvert, \lvert y \rvert \} \le n$. Is it possible that for some integer $n \ge 0$, there are more than $n$ integers $a$ such that $f(a) \neq a \cdot f(1)$ and $\lvert a \rvert \le n$?
[i]Proposed by David Yang[/i]
2022 Iran MO (3rd Round), 2
Find all functions $f:\mathbb{N}\to\mathbb{N}$ such that for all $x,y\in\mathbb{N}$:
$$0\le y+f(x)-f^{f(y)}(x)\le1$$
that here
$$f^n(x)=\underbrace{f(f(\ldots(f}_{n}(x))\ldots)$$
2009 Harvard-MIT Mathematics Tournament, 1
Let $f$ be a differentiable real-valued function defined on the positive real numbers. The tangent lines to the graph of $f$ always meet the $y$-axis 1 unit lower than where they meet the function. If $f(1)=0$, what is $f(2)$?
2013 District Olympiad, 3
Problem 3.
Let $f:\left[ 0,\frac{\pi }{2} \right]\to \left[ 0,\infty \right)$ an increasing function .Prove that:
(a) $\int_{0}^{\frac{\pi }{2}}{\left( f\left( x \right)-f\left( \frac{\pi }{4} \right) \right)}\left( \sin x-\cos x \right)dx\ge 0.$
(b) Exist $a\in \left[ \frac{\pi }{4},\frac{\pi }{2} \right]$ such that $\int_{0}^{a}{f\left( x \right)\sin x\ dx=}\int_{0}^{a}{f\left( x \right)\cos x\ dx}.$
2012 Today's Calculation Of Integral, 800
For a positive constant $a$, find the minimum value of $f(x)=\int_0^{\frac{\pi}{2}} |\sin t-ax\cos t|dt.$
2011 Armenian Republican Olympiads, Problem 1
Does there exist a function $f\colon \mathbb{R}\to\mathbb{R}$ such that for any $x>y,$ it satisfies $f(x)-f(y)>\sqrt{x-y}.$
PEN A Problems, 118
Determine the highest power of $1980$ which divides \[\frac{(1980n)!}{(n!)^{1980}}.\]
2010 Contests, 3
Find all functions $g:\mathbb{N}\rightarrow\mathbb{N}$ such that \[\left(g(m)+n\right)\left(g(n)+m\right)\] is a perfect square for all $m,n\in\mathbb{N}.$
[i]Proposed by Gabriel Carroll, USA[/i]
2009 Indonesia TST, 4
Given positive integer $ n > 1$ and define
\[ S \equal{} \{1,2,\dots,n\}.
\]
Suppose
\[ T \equal{} \{t \in S: \gcd(t,n) \equal{} 1\}.
\]
Let $ A$ be arbitrary non-empty subset of $ A$ such thar for all $ x,y \in A$, we have $ (xy\mod n) \in A$. Prove that the number of elements of $ A$ divides $ \phi(n)$. ($ \phi(n)$ is Euler-Phi function)
2024 Middle European Mathematical Olympiad, 2
Find all functions $f:\mathbb{R} \to \mathbb{R}$ such that
\[yf(x+1)=f(x+y-f(x))+f(x)f(f(y))\]
for all $x,y \in \mathbb{R}$.
2005 Postal Coaching, 19
Find all functions $f : \mathbb{R} \mapsto \mathbb{R}$ such that $f(xy+f(x)) = xf(y) +f(x)$ for all $x,y \in \mathbb{R}$.
2024 Nepal TST, P2
Let $f: \mathbb{N} \to \mathbb{N}$ be an arbitrary function. Prove that there exist two positive integers $x$ and $y$ which satisfy $f(x+y) \le f(2x+f(y))$.
[i](Proposed by David Anghel, Romania)[/i]
2007 Indonesia TST, 3
Find all pairs of function $ f: \mathbb{N} \rightarrow \mathbb{N}$ and polynomial with integer coefficients $ p$ such that:
(i) $ p(mn) \equal{} p(m)p(n)$ for all positive integers $ m,n > 1$ with $ \gcd(m,n) \equal{} 1$, and
(ii) $ \sum_{d|n}f(d) \equal{} p(n)$ for all positive integers $ n$.
2017 District Olympiad, 1
Let $ f,g:[0,1]\longrightarrow{R} $ be two continuous functions such that $ f(x)g(x)\ge 4x^2, $ for all $ x\in [0,1] . $ Prove that
$$ \left| \int_0^1 f(x)dx \right| \ge 1\text{ or } \left| \int_0^1 g(x)dx \right| \ge 1. $$
2013 ELMO Shortlist, 9
Let $a, b, c$ be positive reals, and let $\sqrt[2013]{\frac{3}{a^{2013}+b^{2013}+c^{2013}}}=P$. Prove that
\[\prod_{\text{cyc}}\left(\frac{(2P+\frac{1}{2a+b})(2P+\frac{1}{a+2b})}{(2P+\frac{1}{a+b+c})^2}\right)\ge \prod_{\text{cyc}}\left(\frac{(P+\frac{1}{4a+b+c})(P+\frac{1}{3b+3c})}{(P+\frac{1}{3a+2b+c})(P+\frac{1}{3a+b+2c})}\right).\][i]Proposed by David Stoner[/i]
1978 IMO Longlists, 14
Let $p(x, y)$ and $q(x, y)$ be polynomials in two variables such that for $x \ge 0, y \ge 0$ the following conditions hold:
$(i) p(x, y)$ and $q(x, y)$ are increasing functions of $x$ for every fixed $y$.
$(ii) p(x, y)$ is an increasing and $q(x)$ is a decreasing function of $y$ for every fixed $x$.
$(iii) p(x, 0) = q(x, 0)$ for every $x$ and $p(0, 0) = 0$.
Show that the simultaneous equations $p(x, y) = a, q(x, y) = b$ have a unique solution in the set $x \ge 0, y \ge 0$ for all $a, b$ satisfying $0 \le b \le a$ but lack a solution in the same set if $a < b$.