Found problems: 4776
JOM 2015 Shortlist, N8
Set $p\ge 5$ be a prime number and $n$ be a natural number. Let $f$ be a function $ f: \mathbb{Z_{ \neq }}_0 \rightarrow \mathbb{ N }_0 $ satisfy the following conditions:
i) For all sequences of integers satisfy $ a_i \not\in \{0, 1\} $, and $ p $ $\not |$ $ a_i-1 $, $ \forall $ $ 1 \le i \le p-2 $,\\ $$ \displaystyle \sum^{p-2}_{i=1}f(a_i)=f(a_1a_2 \cdots a_{p-2}) $$
ii) For all coprime integers $ a $ and $ b $, $ a \equiv b \pmod p \Rightarrow f(a)=f(b) $
iii) There exist $k \in \mathbb{Z}_{\neq 0} $ that satisfy $ f(k)=n $
Prove that the number of such functions is $ d(n) $, where $ d(n) $ denotes the number of divisors of $ n $.
2005 China Second Round Olympiad, 2
Assume that positive numbers $a, b, c, x, y, z$ satisfy $cy + bz = a$, $az + cx = b$, and $bx + ay = c$. Find the minimum value of the function \[ f(x, y, z) = \frac{x^2}{x+1} + \frac {y^2}{y+1} + \frac{z^2}{z+1}. \]
2007 District Olympiad, 2
Let $f : \left[ 0, 1 \right] \to \mathbb R$ be a continuous function and $g : \left[ 0, 1 \right] \to \left( 0, \infty \right)$.
Prove that if $f$ is increasing, then
\[\int_{0}^{t}f(x) g(x) \, dx \cdot \int_{0}^{1}g(x) \, dx \leq \int_{0}^{t}g(x) \, dx \cdot \int_{0}^{1}f(x) g(x) \, dx .\]
2005 IberoAmerican Olympiad For University Students, 6
A smooth function $f:I\to \mathbb{R}$ is said to be [i]totally convex[/i] if $(-1)^k f^{(k)}(t) > 0$ for all $t\in I$ and every integer $k>0$ (here $I$ is an open interval).
Prove that every totally convex function $f:(0,+\infty)\to \mathbb{R}$ is real analytic.
[b]Note[/b]: A function $f:I\to \mathbb{R}$ is said to be [i]smooth[/i] if for every positive integer $k$ the derivative of order $k$ of $f$ is well defined and continuous over $\mathbb{R}$. A smooth function $f:I\to \mathbb{R}$ is said to be [i]real analytic[/i] if for every $t\in I$ there exists $\epsilon> 0$ such that for all real numbers $h$ with $|h|<\epsilon$ the Taylor series
\[\sum_{k\geq 0}\frac{f^{(k)}(t)}{k!}h^k\]
converges and is equal to $f(t+h)$.
1987 IMO Longlists, 42
Find the integer solutions of the equation
\[ \left[ \sqrt{2m} \right] = \left[ n(2+\sqrt 2) \right] \]
2006 Moldova National Olympiad, 10.1
Let $a,b$ be the smaller sides of a right triangle. Let $c$ be the hypothenuse and $h$ be the altitude from the right angle. Fint the maximal value of $\frac{c+h}{a+b}$.
1997 Miklós Schweitzer, 6
Let $\kappa$ be an infinite cardinality and let A , B be sets of cardinality $\kappa$. Construct a family $\cal F$ of functions $f : A \to B$ with cardinality $2^\kappa$ such that for all functions $f_1,\cdots, f_n \in\cal F$ and for all $b_1 , ..., b_n \in B$, there exist $a\in A$ such that $f_1(a) = b_1,\cdots, f_n(a) = b_n$.
2005 Today's Calculation Of Integral, 89
For $f(x)=x^4+|x|,$ let $I_1=\int_0^\pi f(\cos x)\ dx,\ I_2=\int_0^\frac{\pi}{2} f(\sin x)\ dx.$
Find the value of $\frac{I_1}{I_2}.$
2025 Philippine MO, P8
Let $\mathbb{N}$ be the set of positive integers. Find all functions $f : \mathbb{N} \to \mathbb{N}$ such that for all $m, n \in \mathbb{N}$, \[m^2f(m) + n^2f(n) + 3mn(m + n)\] is a perfect cube.
2002 IMC, 4
Let $f : [a, b] \rightarrow [a, b]$ be a continuous function and let $p \in [a, b]$. Define $p_0 = p$ and $p_{n+1} = f(p_n)$ for $n = 0, 1, 2,...$. Suppose that the set $T_p = \{p_n : n = 0, 1, 2,...\}$ is closed, i.e., if $x \not\in T_p$ then $\exists \delta > 0$ such that for all $x' \in T_p$ we have $|x'-x|\ge\delta$.
Show that $T_p$ has finitely many elements.
1987 IMO Longlists, 7
Let $f : (0,+\infty) \to \mathbb R$ be a function having the property that $f(x) = f\left(\frac{1}{x}\right)$ for all $x > 0.$ Prove that there exists a function $u : [1,+\infty) \to \mathbb R$ satisfying $u\left(\frac{x+\frac 1x }{2} \right) = f(x)$ for all $x > 0.$
1982 Putnam, A4
Assume that the system of differential equations $y'=-z^3$, $z'=y^3$ with the initial conditions $y(0)=1$, $z(0)=0$ has a unique solution $y=f(x)$, $z=g(x)$ defined for real $x$. Prove that there exists a positive constant $L$ such that for all real $x$,
$$f(x+L)=f(x),\enspace g(x+L)=g(x).$$
2017 Romania National Olympiad, 1
[b]a)[/b] Let be a continuous function $ f:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R}_{>0} . $ Show that there exists a natural number $ n_0 $ and a sequence of positive real numbers $ \left( x_n \right)_{n>n_0} $ that satisfy the following relation.
$$ n\int_0^{x_n} f(t)dt=1,\quad n_0<\forall n\in\mathbb{N} $$
[b]b)[/b] Prove that the sequence $ \left( nx_n \right)_{n> n_0} $ is convergent and find its limit.
1986 Traian Lălescu, 2.2
We know that the function $ f: \left[ 0,\frac{\pi }{2}\right]\longrightarrow [a,b], f(x)=\sqrt[n]{\cos x } +\sqrt[n]{\sin x} , $ is surjective for a given natural number $ n\ge 2. $ Determine the numbers $ a,b, $ and the monotony of $ f. $
1982 IMO Longlists, 9
Given any two real numbers $\alpha$ and $\beta , 0 \leq \alpha < \beta \leq 1$, prove that there exists a natural number $m$ such that
\[\alpha < \frac{\phi(m)}{m} < \beta.\]
2013 Tournament of Towns, 5
Do there exist two integer-valued functions $f$ and $g$ such that for every integer $x$ we have
(a) $f(f(x)) = x, g(g(x)) = x, f(g(x)) > x, g(f(x)) > x$ ?
(b) $f(f(x)) < x, g(g(x)) < x, f(g(x)) > x, g(f(x)) > x$ ?
1941 Putnam, B7
Do either (1) or (2):
(1) Show that any solution $f(t)$ of the functional equation
$$f(x+y)f(x-y)=f(x)^{2} +f(y)^{2} -1$$
for $x,y\in \mathbb{R}$ satisfies
$$f''(t)= \pm c^{2} f(t)$$
for a constant $c$, assuming the existence and continuity of the second derivative.
Deduce that $f(t)$ is one of the functions
$$ \pm \cos ct, \;\;\; \pm \cosh ct.$$
(2) Let $(a_{i})_{i=1,...,n}$ and $(b_{i})_{i=1,...,n}$ be real numbers. Define an $(n+1)\times (n+1)$-matrix $A=(c_{ij})$ by
$$ c_{i1}=1, \; \; c_{1j}= x^{j-1} \; \text{for} \; j\leq n,\; \; c_{1n+1}=p(x), \;\; c_{ij}=a_{i-1}^{j-1} \; \text{for}\; i>1, j\leq n,\;\;
c_{in+1}=b_{i-1}\; \text{for}\; i>1.$$
The polynomial $p(x)$ is defined by the equation $\det A=0$. Let $f$ be a polynomial and replace $(b_{i})$ with $(f(b_{i}))$. Then $\det A=0$ defines another polynomial $q(x)$. Prove that $f(p(x))-q(x)$ is a multiple of
$$\prod_{i=1}^{n} (x-a_{i}).$$
2005 Junior Balkan Team Selection Tests - Moldova, 4
Let the $A$ be the set of all nonenagative integers.
It is given function such that $f:\mathbb{A}\rightarrow\mathbb{A}$ with $f(1) = 1$ and for every element $n$ od set $A$ following holds:
[b]1)[/b] $3 f(n) \cdot f(2n+1) = f(2n) \cdot (1+3 \cdot f(n))$;
[b]2)[/b] $f(2n) < 6f(n)$,
Find all solutions of $f(k)+f(l) = 293$, $k<l$.
2006 Vietnam National Olympiad, 4
Given is the function $f(x)=-x+\sqrt{(x+a)(x+b)}$, where $a$, $b$ are distinct given positive real numbers. Prove that for all real numbers $s\in (0,1)$ there exist only one positive real number $\alpha$ such that \[ f(\alpha)=\sqrt [s]{\frac{a^s+b^s}{2}} . \]
2022 Indonesia TST, A
Determine all functions $f : \mathbb{R} \to \mathbb{R}$ satisfying
\[ f(a^2) - f(b^2) \leq (f(a)+b)(a-f(b)) \] for all $a,b \in \mathbb{R}$.
2013 IMO Shortlist, C5
Let $r$ be a positive integer, and let $a_0 , a_1 , \cdots $ be an infinite sequence of real numbers. Assume that for all nonnegative integers $m$ and $s$ there exists a positive integer $n \in [m+1, m+r]$ such that
\[ a_m + a_{m+1} +\cdots +a_{m+s} = a_n + a_{n+1} +\cdots +a_{n+s} \]
Prove that the sequence is periodic, i.e. there exists some $p \ge 1 $ such that $a_{n+p} =a_n $ for all $n \ge 0$.
1998 Brazil Team Selection Test, Problem 3
Find all functions $f: \mathbb N \to \mathbb N$ for which
\[ f(n) + f(n+1) = f(n+2)f(n+3)-1996\]
holds for all positive integers $n$.
2006 USA Team Selection Test, 3
Find the least real number $k$ with the following property: if the real numbers $x$, $y$, and $z$ are not all positive, then \[k(x^{2}-x+1)(y^{2}-y+1)(z^{2}-z+1)\geq (xyz)^{2}-xyz+1.\]
2021 China Team Selection Test, 5
Determine all $ f:R\rightarrow R $ such that
$$ f(xf(y)+y^3)=yf(x)+f(y)^3 $$
2003 Italy TST, 3
Determine all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ that satisfy
\[f(f(x)+y)=2x+f(f(y)-x)\quad\text{for all real}\ x,y. \]