This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2019 China Team Selection Test, 5

Determine all functions $f: \mathbb{Q} \to \mathbb{Q}$ such that $$f(2xy + \frac{1}{2}) + f(x-y) = 4f(x)f(y) + \frac{1}{2}$$ for all $x,y \in \mathbb{Q}$.

2004 Romania National Olympiad, 4

(a) Build a function $f : \mathbb R \to \mathbb R_+$ with the property $\left( \mathcal P \right)$, i.e. all $x \in \mathbb Q$ are local, strict minimum points. (b) Build a function $f : \mathbb Q \to \mathbb R_+$ such that every point is a local, strict minimum point and such that $f$ is unbounded on $I \cap \mathbb Q$, where $I$ is a non-degenerate interval. (c) Let $f: \mathbb R \to \mathbb R_+$ be a function unbounded on every $I \cap \mathbb Q$, where $I$ is a non-degenerate interval. Prove that $f$ doesn't have the property $\left( \mathcal P \right)$.

2021 Brazil Undergrad MO, Problem 2

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ from $C^2$ (id est, $f$ is twice differentiable and $f''$ is continuous.) such that for every real number $t$ we have $f(t)^2=f(t \sqrt{2})$.

2015 VJIMC, 1

[b]Problem 1[/b] Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on $\mathbb{R}$. Prove that there exists $x \in [0, 1]$ such that $$\frac{4}{\pi} ( f(1) - f(0) ) = (1+x^2) f'(x) \ .$$

2024 OMpD, 3

Tags: calculus , function
Let \( f: \mathbb{R} \to \mathbb{R} \) be a differentiable function such that \( f(0) = 0 \) and \( 0 < f'(t) \leq 1 \) for all \( t \in [0, 1] \). Show that: \[ \left( \int_0^1 f(t) \, dt \right)^2 \geq \int_0^1 f(t)^3 \, dt. \]

2009 Jozsef Wildt International Math Competition, W. 4

Let $\Phi$ denote the Euler totient function. Prove that for infinitely many $k$ we have $\Phi (2^k+1) < 2^{k-1}$ and that for infinitely many $m$ one has $\Phi (2^m+1) > 2^{m-1}$

2019 ELMO Shortlist, N2

Let $f:\mathbb N\to \mathbb N$. Show that $f(m)+n\mid f(n)+m$ for all positive integers $m\le n$ if and only if $f(m)+n\mid f(n)+m$ for all positive integers $m\ge n$. [i]Proposed by Carl Schildkraut[/i]

Today's calculation of integrals, 860

For a function $f(x)\ (x\geq 1)$ satisfying $f(x)=(\log_e x)^2-\int_1^e \frac{f(t)}{t}dt$, answer the questions as below. (a) Find $f(x)$ and the $y$-coordinate of the inflection point of the curve $y=f(x)$. (b) Find the area of the figure bounded by the tangent line of $y=f(x)$ at the point $(e,\ f(e))$, the curve $y=f(x)$ and the line $x=1$.

2011 ELMO Shortlist, 1

Let $S$ be a finite set, and let $F$ be a family of subsets of $S$ such that a) If $A\subseteq S$, then $A\in F$ if and only if $S\setminus A\notin F$; b) If $A\subseteq B\subseteq S$ and $B\in F$, then $A\in F$. Determine if there must exist a function $f:S\to\mathbb{R}$ such that for every $A\subseteq S$, $A\in F$ if and only if \[\sum_{s\in A}f(s)<\sum_{s\in S\setminus A}f(s).\] [i]Evan O'Dorney.[/i]

2020 LIMIT Category 2, 1

Find the number of $f:\{1,\ldots, 5\}\to \{1,\ldots, 5\}$ such that $f(f(x))=x$ (A)$26$ (B)$41$ (C)$120$ (D)$60$

2005 Today's Calculation Of Integral, 70

Find the number of root for $\int_0^{\frac{\pi}{2}} e^x\cos (x+a)\ dx=0$ at $0\leq a <2\pi$

2019 AMC 12/AHSME, 8

Tags: function
Let $f(x) = x^{2}(1-x)^{2}$. What is the value of the sum \begin{align*} f\left(\frac{1}{2019}\right)-f\left(\frac{2}{2019}\right)+f\left(\frac{3}{2019}\right)-&f\left(\frac{4}{2019}\right)+\cdots\\ &\,+f\left(\frac{2017}{2019}\right) - f\left(\frac{2018}{2019}\right)? \end{align*} $\textbf{(A) }0\qquad\textbf{(B) }\frac{1}{2019^{4}}\qquad\textbf{(C) }\frac{2018^{2}}{2019^{4}}\qquad\textbf{(D) }\frac{2020^{2}}{2019^{4}}\qquad\textbf{(E) }1$

2007 Singapore Junior Math Olympiad, 5

Tags: function , algebra
For any positive integer $n$, let $f(n)$ denote the $n$- th positive nonsquare integer, i.e., $f(1) = 2, f(2) = 3, f(3) = 5, f(4) = 6$, etc. Prove that $f(n)=n +\{\sqrt{n}\}$ where $\{x\}$ denotes the integer closest to $x$. (For example, $\{\sqrt{1}\} = 1, \{\sqrt{2}\} = 1, \{\sqrt{3}\} = 2, \{\sqrt{4}\} = 2$.)

2008 Romanian Master of Mathematics, 3

Let $ a>1$ be a positive integer. Prove that every non-zero positive integer $ N$ has a multiple in the sequence $ (a_n)_{n\ge1}$, $ a_n\equal{}\left\lfloor\frac{a^n}n\right\rfloor$.

2010 Slovenia National Olympiad, 4

Let $x,y$ and $z$ be real numbers such that $0 \leq x,y,z \leq 1.$ Prove that \[xyz+(1-x)(1-y)(1-z) \leq 1.\] When does equality hold?

1969 IMO Shortlist, 51

$(NET 6)$ A curve determined by $y =\sqrt{x^2 - 10x+ 52}, 0\le x \le 100,$ is constructed in a rectangular grid. Determine the number of squares cut by the curve.

2012 Purple Comet Problems, 11

Tags: function
For some integers $a$ and $b$ the function $f(x)=ax+b$ has the properties that $f(f(0))=0$ and $f(f(f(4)))=9$. Find $f(f(f(f(10))))$.

2013 India National Olympiad, 3

Let $a,b,c,d \in \mathbb{N}$ such that $a \ge b \ge c \ge d $. Show that the equation $x^4 - ax^3 - bx^2 - cx -d = 0$ has no integer solution.

2008 239 Open Mathematical Olympiad, 6

Given a polynomial $P(x,y)$ with real coefficients, suppose that some real function $f:\mathbb R \to \mathbb R$ satisfies $$P(x,y) = f(x+y)-f(x)-f(y)$$for all $x,y\in\mathbb R$. Show that some polynomial $q$ satisfies $$P(x,y) = q(x+y)-q(x)-q(y)$$

2012 Germany Team Selection Test, 3

Determine all pairs $(f,g)$ of functions from the set of real numbers to itself that satisfy \[g(f(x+y)) = f(x) + (2x + y)g(y)\] for all real numbers $x$ and $y$. [i]Proposed by Japan[/i]

2001 Tuymaada Olympiad, 3

Do there exist quadratic trinomials $P, \ \ Q, \ \ R$ such that for every integers $x$ and $y$ an integer $z$ exists satisfying $P(x)+Q(y)=R(z)?$ [i]Proposed by A. Golovanov[/i]

2005 China Northern MO, 2

Let $f$ be a function from R to R. Suppose we have: (1) $f(0)=0$ (2) For all $x, y \in (-\infty, -1) \cup (1, \infty)$, we have $f(\frac{1}{x})+f(\frac{1}{y})=f(\frac{x+y}{1+xy})$. (3) If $x \in (-1,0)$, then $f(x) > 0$. Prove: $\sum_{n=1}^{+\infty} f(\frac{1}{n^2+7n+11}) > f(\frac12)$ with $n \in N^+$.

2019 Harvard-MIT Mathematics Tournament, 4

Tags: algebra , function , hmmt
Let $\mathbb{N}$ be the set of positive integers, and let $f: \mathbb{N} \to \mathbb{N}$ be a function satisfying [list] [*] $f(1) = 1$, [*] for $n \in \mathbb{N}$, $f(2n) = 2f(n)$ and $f(2n+1) = 2f(n) - 1$. [/list] Determine the sum of all positive integer solutions to $f(x) = 19$ that do not exceed 2019.

2012 India IMO Training Camp, 3

Let $\mathbb{R}^{+}$ denote the set of all positive real numbers. Find all functions $f:\mathbb{R}^{+}\longrightarrow \mathbb{R}$ satisfying \[f(x)+f(y)\le \frac{f(x+y)}{2}, \frac{f(x)}{x}+\frac{f(y)}{y}\ge \frac{f(x+y)}{x+y},\] for all $x, y\in \mathbb{R}^{+}$.

2021 Nigerian MO Round 3, Problem 5

Let $f(x)=\frac{P(x)}{Q(x)}$, where $P(x), Q(x)$ are two non-constant polynomials with no common zeros and $P(0)=P(1)=0$. Suppose $f(x)f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$ for infinitely many values of $x$. a) Show that $\text{deg}(P)<\text{deg}(Q)$. b) Show that $P'(1)=2Q'(1)-\text{deg}(Q)\cdot Q(1)$. Here, $P'(x)$ denotes the derivative of $P(x)$ as usual.