This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

1996 China Team Selection Test, 2

$S$ is the set of functions $f:\mathbb{N} \to \mathbb{R}$ that satisfy the following conditions: [b]I.[/b] $f(1) = 2$ [b]II.[/b] $f(n+1) \geq f(n) \geq \frac{n}{n + 1} f(2n)$ for $n = 1, 2, \ldots$ Find the smallest $M \in \mathbb{N}$ such that for any $f \in S$ and any $n \in \mathbb{N}, f(n) < M$.

1998 Romania Team Selection Test, 1

Find all monotonic functions $u:\mathbb{R}\rightarrow\mathbb{R}$ which have the property that there exists a strictly monotonic function $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[f(x+y)=f(x)u(x)+f(y) \] for all $x,y\in\mathbb{R}$. [i]Vasile Pop[/i]

2013 Bulgaria National Olympiad, 2

Tags: algebra , function
Find all $f : \mathbb{R}\to \mathbb{R}$ , bounded in $(0,1)$ and satisfying: $x^2 f(x) - y^2 f(y) = (x^2-y^2) f(x+y) -xy f(x-y)$ for all $x,y \in \mathbb{R}$ [i]Proposed by Nikolay Nikolov[/i]

2003 USA Team Selection Test, 5

Let $A, B, C$ be real numbers in the interval $\left(0,\frac{\pi}{2}\right)$. Let \begin{align*} X &= \frac{\sin A\sin (A-B)\sin (A-C)}{\sin (B+C)} \\ Y &= \frac{\sin B\sin(B-C)\sin (B-A)}{\sin (C+A)} \\ Z &= \frac{\sin C\sin (C-A)\sin (C-B)}{\sin (A+B)} . \end{align*} Prove that $X+Y+Z \geq 0$.

2006 Baltic Way, 2

Suppose that the real numbers $a_i\in [-2,17],\ i=1,2,\ldots,59,$ satisfy $a_1+a_2+\ldots+a_{59}=0.$ Prove that \[a_1^2+a_2^2+\ldots+a_{59}^2\le 2006\]

2008 Canada National Olympiad, 4

Determine all functions $ f$ defined on the natural numbers that take values among the natural numbers for which \[ (f(n))^p \equiv n\quad {\rm mod}\; f(p) \] for all $ n \in {\bf N}$ and all prime numbers $ p$.

2016 Miklós Schweitzer, 4

Prove that there exists a sequence $a(1),a(2),\dots,a(n),\dots$ of real numbers such that \[ a(n+m)\le a(n)+a(m)+\frac{n+m}{\log (n+m)} \] for all integers $m,n\ge 1$, and such that the set $\{a(n)/n:n\ge 1\}$ is everywhere dense on the real line. [i]Remark.[/i] A theorem of de Bruijn and Erdős states that if the inequality above holds with $f(n + m)$ in place of the last term on the right-hand side, where $f(n)\ge 0$ is nondecreasing and $\sum_{n=2}^\infty f(n)/n^2<\infty$, then $a(n)/n$ converges or tends to $(-\infty)$.

2019 PUMaC Algebra B, 6

Tags: algebra , function
Let $\mathbb N_0$ be the set of non-negative integers. There is a triple $(f,a,b)$, where $f$ is a function from $\mathbb N_0$ to $\mathbb N_0$ and $a,b\in\mathbb N_0$ that satisfies the following conditions: [list] [*]$f(1)=2$ [*]$f(a)+f(b)\leq 2\sqrt{f(a)}$ [*]For all $n>0$, we have $f(n)=f(n-1)f(b)+2n-f(b)$ [/list] Find the sum of all possible values of $f(b+100)$.

1999 Harvard-MIT Mathematics Tournament, 1

If $a@b=\dfrac{a^3-b^3}{a-b}$, for how many real values of $a$ does $a@1=0$?

1983 AIME Problems, 2

Let $f(x) = |x - p| + |x - 15| + |x - p - 15|$, where $0 < p < 15$. Determine the minimum value taken by $f(x)$ for $x$ in the interval $p \le x \le 15$.

2004 USAMO, 3

For what real values of $k>0$ is it possible to dissect a $1 \times k$ rectangle into two similar, but noncongruent, polygons?

2024 Chile National Olympiad., 1

Tags: algebra , function
Let \( f(x) = \frac{100^x}{100^x + 10} \). Determine the value of: \[ f\left( \frac{1}{2024} \right) - f\left( \frac{2}{2024} \right) + f\left( \frac{3}{2024} \right) - f\left( \frac{4}{2024} \right) + \ldots - f\left( \frac{2022}{2024} \right) + f\left( \frac{2023}{2024} \right) \]

2005 Today's Calculation Of Integral, 88

A function $f(x)$ satisfies $\begin{cases} f(x)=-f''(x)-(4x-2)f'(x)\\ f(0)=a,\ f(1)=b \end{cases}$ Evaluate $\int_0^1 f(x)(x^2-x)\ dx.$

PEN A Problems, 25

Show that ${2n \choose n} \; \vert \; \text{lcm}(1,2, \cdots, 2n)$ for all positive integers $n$.

2010 Romanian Masters In Mathematics, 4

Determine whether there exists a polynomial $f(x_1, x_2)$ with two variables, with integer coefficients, and two points $A=(a_1, a_2)$ and $B=(b_1, b_2)$ in the plane, satisfying the following conditions: (i) $A$ is an integer point (i.e $a_1$ and $a_2$ are integers); (ii) $|a_1-b_1|+|a_2-b_2|=2010$; (iii) $f(n_1, n_2)>f(a_1, a_2)$ for all integer points $(n_1, n_2)$ in the plane other than $A$; (iv) $f(x_1, x_2)>f(b_1, b_2)$ for all integer points $(x_1, x_2)$ in the plane other than $B$. [i]Massimo Gobbino, Italy[/i]

1998 Italy TST, 1

A real number $\alpha$ is given. Find all functions $f : R^+ \to R^+$ satisfying $\alpha x^2f\left(\frac{1}{x}\right) +f(x) =\frac{x}{x+1}$ for all $x > 0$.

2009 USA Team Selection Test, 9

Prove that for positive real numbers $x$, $y$, $z$, \[ x^3(y^2+z^2)^2 + y^3(z^2+x^2)^2+z^3(x^2+y^2)^2 \geq xyz\left[xy(x+y)^2 + yz(y+z)^2 + zx(z+x)^2\right].\] [i]Zarathustra (Zeb) Brady.[/i]

1986 Traian Lălescu, 1.2

Tags: function , algebra
Prove that there exists a surjective function $ f:\mathbb{N}\longrightarrow\mathbb{N} $ having the property that for all natural numbers $ n\ge 2, $ there exists an infinite set $ A_n $ such that $ f(x)=n, $ for all $ x\in A_n. $

2006 China Team Selection Test, 2

$x_{1}, x_{2}, \cdots, x_{n}$ are positive numbers such that $\sum_{i=1}^{n}x_{i}= 1$. Prove that \[\left( \sum_{i=1}^{n}\sqrt{x_{i}}\right) \left( \sum_{i=1}^{n}\frac{1}{\sqrt{1+x_{i}}}\right) \leq \frac{n^{2}}{\sqrt{n+1}}\]

2003 Gheorghe Vranceanu, 1

Let $ M $ be a set of nonzero real numbers and $ f:M\longrightarrow M $ be a function having the property that the identity function is $ f+f^{-1} . $ [b]1)[/b] Prove that $ m\in M\iff -m\in M. $ [b]2)[/b] Show that $ f $ is odd. [b]3)[/b] Determine the cardinal of $ M. $

2001 Baltic Way, 16

Let $f$ be a real-valued function defined on the positive integers satisfying the following condition: For all $n>1$ there exists a prime divisor $p$ of $n$ such that $f(n)=f\left(\frac{n}{p}\right)-f(p)$. Given that $f(2001)=1$, what is the value of $f(2002)$?

2017 Kosovo Team Selection Test, 2

Tags: function , algebra
Prove that there doesn't exist any function $f:\mathbb{N}\rightarrow \mathbb{N}$ such that : $f(f(n-1)=f(n+1)-f(n)$, for every natural $n\geq2$

2007 Romania National Olympiad, 1

Let $\mathcal{F}$ be the set of functions $f: [0,1]\to\mathbb{R}$ that are differentiable, with continuous derivative, and $f(0)=0$, $f(1)=1$. Find the minimum of $\int_{0}^{1}\sqrt{1+x^{2}}\cdot \big(f'(x)\big)^{2}\ dx$ (where $f\in\mathcal{F}$) and find all functions $f\in\mathcal{F}$ for which this minimum is attained. [hide="Comment"] In the contest, this was the b) point of the problem. The a) point was simply ``Prove the Cauchy inequality in integral form''. [/hide]

2002 Miklós Schweitzer, 1

Tags: function
For an arbitrary ordinal number $\alpha$ let $H(\alpha)$ denote the set of functions $f\colon \alpha \rightarrow \{ -1,0,1\}$ that map all but finitely many elements of $\alpha$ to $0$. Order $H(\alpha)$ according to the last difference, that is, for $f, g\in H(\alpha)$ let $f\prec g$ if $f(\beta) < g(\beta)$ holds for the maximum ordinal number $\beta < \alpha$ with $f(\beta) \neq g(\beta)$. Prove that the ordered set $(H(\alpha), \prec)$ is scattered (i.e. it doesn't contain a subset isomorphic to the set of rational numbers with the usual order), and that any scattered order type can be embedded into some $(H(\alpha), \prec)$.

2006 MOP Homework, 5

Let $ABCD$ be a convex quadrilateral. Lines $AB$ and $CD$ meet at $P$, and lines $AD$ and $BC$ meet at $Q$. Let $O$ be a point in the interior of $ABCD$ such that $\angle BOP = \angle DOQ$. Prove that $\angle AOB +\angle COD = 180$.