This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2010 Junior Balkan MO, 1

The real numbers $a$, $b$, $c$, $d$ satisfy simultaneously the equations \[abc -d = 1, \ \ \ bcd - a = 2, \ \ \ cda- b = 3, \ \ \ dab - c = -6.\] Prove that $a + b + c + d \not = 0$.

1996 IMO Shortlist, 5

Show that there exists a bijective function $ f: \mathbb{N}_{0}\to \mathbb{N}_{0}$ such that for all $ m,n\in \mathbb{N}_{0}$: \[ f(3mn \plus{} m \plus{} n) \equal{} 4f(m)f(n) \plus{} f(m) \plus{} f(n). \]

2004 Gheorghe Vranceanu, 3

Consider the function $ f:(-\infty,1]\longrightarrow\mathbb{R} $ defined as $$ f(x)=\left\{ \begin{matrix} \frac{5}{2} +2^x-\frac{1}{2^x} ,& \quad x<-1 \\ 3^{\sqrt{1-x^2}} ,& \quad x\in [-1,1] \end{matrix} \right. . $$ [b]a)[/b] For a fixed parameter, find the roots of $ f-m. $ [b]b)[/b] Study the inversability of the restrictions of $ f $ to $ (-\infty,-1] $ and $ [-1,1] $ and find the inverses of these that admit them. [i]D. Zaharia[/i]

2008 Korea - Final Round, 3

Tags: algebra , function
Determine all functions $f : \mathbb{R}^+\rightarrow\mathbb{R}$ that satisfy the following $f(1)=2008$, $|{f(x)}| \le x^2+1004^2$, $f\left (x+y+\frac{1}{x}+\frac{1}{y}\right )=f\left (x+\frac{1}{y}\right )+f\left (y+\frac{1}{x}\right ).$

2000 IMO Shortlist, 3

Find all pairs of functions $ f : \mathbb R \to \mathbb R$, $g : \mathbb R \to \mathbb R$ such that \[f \left( x + g(y) \right) = xf(y) - y f(x) + g(x) \quad\text{for all } x, y\in\mathbb{R}.\]

2006 AIME Problems, 13

Tags: function
For each even positive integer $x$, let $g(x)$ denote the greatest power of $2$ that divides $x$. For example, $g(20)=4$ and $g(16)=16$. For each positive integer $n$, let $S_n=\sum_{k=1}^{2^{n-1}}g(2k).$ Find the greatest integer $n$ less than $1000$ such that $S_n$ is a perfect square.

2022 Singapore MO Open, Q3

Find all functions $f:\mathbb{Z}^+\rightarrow \mathbb{Z}^+$ satisfying $$m!!+n!!\mid f(m)!!+f(n)!!$$for each $m,n\in \mathbb{Z}^+$, where $n!!=(n!)!$ for all $n\in \mathbb{Z}^+$. [i]Proposed by DVDthe1st[/i]

2021 AMC 12/AHSME Fall, 20

Tags: function
For each positive integer $n$, let $f_1(n)$ be twice the number of positive integer divisors of $n$, and for $j \ge 2$, let $f_j(n) = f_1(f_{j-1}(n))$. For how many values of $n \le 50$ is $f_{50}(n) = 12?$ $\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }9\qquad\textbf{(D) }10\qquad\textbf{(E) }11$

1996 Estonia Team Selection Test, 3

Find all functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy for all $x$: $(i)$ $f(x)=-f(-x);$ $(ii)$ $f(x+1)=f(x)+1;$ $(iii)$ $f\left( \frac{1}{x}\right)=\frac{1}{x^2}f(x)$ for $x\ne 0$

1994 IMO, 5

Let $ S$ be the set of all real numbers strictly greater than −1. Find all functions $ f: S \to S$ satisfying the two conditions: (a) $ f(x \plus{} f(y) \plus{} xf(y)) \equal{} y \plus{} f(x) \plus{} yf(x)$ for all $ x, y$ in $ S$; (b) $ \frac {f(x)}{x}$ is strictly increasing on each of the two intervals $ \minus{} 1 < x < 0$ and $ 0 < x$.

2009 IMO Shortlist, 6

Suppose that $ s_1,s_2,s_3, \ldots$ is a strictly increasing sequence of positive integers such that the sub-sequences \[s_{s_1},\, s_{s_2},\, s_{s_3},\, \ldots\qquad\text{and}\qquad s_{s_1+1},\, s_{s_2+1},\, s_{s_3+1},\, \ldots\] are both arithmetic progressions. Prove that the sequence $ s_1, s_2, s_3, \ldots$ is itself an arithmetic progression. [i]Proposed by Gabriel Carroll, USA[/i]

1999 Hong kong National Olympiad, 4

Tags: algebra , function
Determine all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that \[f(x+yf(x))=f(x)+xf(y) \quad \text{for all}\ x,y \in\mathbb{R}\]

2015 Albania JBMO TST, 5

Tags: function
Let $x$ and $y$ be positive real numbers with $x + y =1 $. Prove that $$\frac{(3x-1)^2}{x}+ \frac{(3y-1)^2}{y} \ge1.$$ For which $x$ and $y$ equality holds? (K. Czakler, GRG 21, Vienna)

1986 French Mathematical Olympiad, Problem 5

Tags: algebra , function
The functions $f,g:[0,1]\to\mathbb R$ are given with the formulas $$f(x)=\sqrt[4]{1-x},\enspace g(x)=f(f(x)),$$ and $c$ denotes any solution of $x=f(x)$. (a) i. Analyze the function $f(x)$ and draw its graph. Prove that the equation $f(x)=x$ has the unique root $c$ satisfying $c\in[0.72,0.73]$. ii. Analyze the function $f'(x)$. Let $M_1$ and $M_2$ be the points of the graph of $f(x)$ with different $x$ coordinates. What is the position of the arc $M_1M_2$ of the graph with respect to the segment $M_1M_2$? iii. Analyze the function $g(x)$ and draw its graph. What is the position of that graph with respect to the line $y=x$? Find the tangents to the graph at points with $x$ coordinates $0$ and $1$. iv. Prove that every sequence $\{a_n\}$ with the conditions $a_1\in(0,1)$ and $a_{n+1}=f(a_n)$ for $n\in\mathbb N$ converges. [hide=Official Hint]Consider the sequences $\{a_{2n-1}\},\{a_{2n}\}~(n\in\mathbb N)$ and the function $g(x)$ associated with the graph.[/hide] (b) On the graph of the function $f(x)$ consider the points $M$ and $M'$ with $x$ coordinates $x$ and $f(x)$, where $x\ne c$. i. Prove that the line $MM'$ intersects with the line $y=x$ at the point with $x$ coordinate $$h(x)=x-\frac{(f(x)-x)^2}{g(x)+x-2f(x)}.$$ ii. Prove that if $x\in(0,c)$ then $h(x)\in(x,c)$. iii. Analyze whether the sequence $\{a_n\}$ satisfying $a_1\in(0,c),a_{n+1}=h(a_n)$ for $n\in\mathbb N$ converges. Prove that the sequence $\{\tfrac{a_{n+1}-c}{a_n-c}\}$ converges and find its limit. (c) Assume that the calculator approximates every number $b\in[-2,2]$ by number $\overline b$ having $p$ decimal digits after the decimal point. We are performing the following sequence of operations on that calculator: 1) Set $a=0.72$; 2) Calculate $\delta(a)=\overline{f(a)}-a$; 3) If $|\delta(a)|>0.5\cdot10^{-p}$, then calculate $\overline{h(a)}$ and go to the operation $2)$ using $\overline{h(a)}$ instead of $a$; 4) If $|\delta(a)|\le0.5\cdot10^{-p}$, finish the calculation. Let $\overleftrightarrow c$ be the last of calculated values for $\overline{h(a)}$. Assuming that for each $x\in[0.72,0.73]$ we have $\left|\overline{f(x)}-f(x)\right|<\epsilon$, determine $\delta(\overleftrightarrow c)$, the accuracy (depending on $\epsilon$) of the approximation of $c$ with $\overleftrightarrow c$. (d) Assume that the sequence $\{a_n\}$ satisfies $a_1=0.72$ and $a_{n+1}=f(a_n)$ for $n\in\mathbb N$. Find the smallest $n_0\in\mathbb N$, such that for every $n\ge n_0$ we have $|a_n-c|<10^{-6}$.

2004 IMC, 2

Let $f,g:[a,b]\to [0,\infty)$ be two continuous and non-decreasing functions such that each $x\in [a,b]$ we have \[ \int^x_a \sqrt { f(t) }\ dt \leq \int^x_a \sqrt { g(t) }\ dt \ \ \textrm{and}\ \int^b_a \sqrt {f(t)}\ dt = \int^b_a \sqrt { g(t)}\ dt. \] Prove that \[ \int^b_a \sqrt { 1+ f(t) }\ dt \geq \int^b_a \sqrt { 1 + g(t) }\ dt. \]

PEN K Problems, 25

Consider all functions $f:\mathbb{N}\to\mathbb{N}$ satisfying $f(t^2 f(s)) = s(f(t))^2$ for all $s$ and $t$ in $N$. Determine the least possible value of $f(1998)$.

1997 Moldova Team Selection Test, 9

Tags: function , algebra
Find all $t\in \mathbb Z$ such that: exists a function $f:\mathbb Z^+\to \mathbb Z$ such that: $f(1997)=1998$ $\forall x,y\in \mathbb Z^+ , \text{gcd}(x,y)=d : f(xy)=f(x)+f(y)+tf(d):P(x,y)$

2007 Gheorghe Vranceanu, 4

Let $ F $ be the primitive of a continuous function $ f:\mathbb{R}\longrightarrow (0,\infty ), $ with $ F(0)=0. $ Determine for which values of $ \lambda \in (0,1) $ the function $ \left( F^{-1}\circ \lambda F \right)/\text{id.} $ has limit at $ 0, $ and calculate it.

2023 OMpD, 4

Let $n \geq 0$ be an integer and $f: [0, 1] \rightarrow \mathbb{R}$ an integrable function such that: $$\int^1_0f(x)dx = \int^1_0xf(x)dx = \int^1_0x^2f(x)dx = \ldots = \int^1_0x^nf(x)dx = 1$$ Prove that: $$\int_0^1f(x)^2dx \geq (n+1)^2$$

2014 NIMO Problems, 1

Let $\eta(m)$ be the product of all positive integers that divide $m$, including $1$ and $m$. If $\eta(\eta(\eta(10))) = 10^n$, compute $n$. [i]Proposed by Kevin Sun[/i]

2010 Laurențiu Panaitopol, Tulcea, 2

Find the strictly monotone functions $ f:\{ 0\}\cup\mathbb{N}\longrightarrow\{ 0\}\cup\mathbb{N} $ that satisfy the following two properties: $ \text{(i)} f(2n)=n+f(n), $ for any nonnegative integers $ n. $ $ \text{(ii)} f(n) $ is a perfect square if and only if $ n $ is a perfect square.

PEN K Problems, 14

Find all functions $f:\mathbb{Z} \to \mathbb{Z}$ such that for all $m\in\mathbb{Z}$: [list][*] $f(m+8) \le f(m)+8$, [*] $f(m+11) \ge f(m)+11$.[/list]

2001 Hungary-Israel Binational, 4

Let $P (x) = x^{3}-3x+1.$ Find the polynomial $Q$ whose roots are the fifth powers of the roots of $P$.

1963 Putnam, A3

Find an integral formula for the solution of the differential equation $$\delta (\delta-1)(\delta-2) \cdots(\delta -n +1) y= f(x), \;\;\, x\geq 1,$$ for $y$ as a function of $f$ satisfying the initial conditions $y(1)=y'(1)=\ldots= y^{(n-1)}(1)=0$, where $f$ is continuous and $\delta$ is the differential operator $ x \frac{d}{dx}.$

2005 Italy TST, 1

Tags: function , algebra
Suppose that $f:\{1, 2,\ldots ,1600\}\rightarrow\{1, 2,\ldots ,1600\}$ satisfies $f(1)=1$ and \[f^{2005}(x)=x\quad\text{for}\ x=1,2,\ldots ,1600. \] $(a)$ Prove that $f$ has a fixed point different from $1$. $(b)$ Find all $n>1600$ such that any $f:\{1,\ldots ,n\}\rightarrow\{1,\ldots ,n\}$ satisfying the above condition has at least two fixed points.