This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2008 District Olympiad, 1

Let $ f:[0,1]\longrightarrow\mathbb{R} $ be a countinuous function such that $$ \int_0^1 f(x)dx=\int_0^1 xf(x)dx. $$ Show that there is a $ c\in (0,1) $ such that $ f(c)=\int_0^c f(x)dx. $

2004 IMO Shortlist, 3

Does there exist a function $s\colon \mathbb{Q} \rightarrow \{-1,1\}$ such that if $x$ and $y$ are distinct rational numbers satisfying ${xy=1}$ or ${x+y\in \{0,1\}}$, then ${s(x)s(y)=-1}$? Justify your answer. [i]Proposed by Dan Brown, Canada[/i]

2002 Pan African, 1

Tags: function
Find all functions $f: N_0 \to N_0$, (where $N_0$ is the set of all non-negative integers) such that $f(f(n))=f(n)+1$ for all $n \in N_0$ and the minimum of the set $\{ f(0), f(1), f(2) \cdots \}$ is $1$.

2000 Stanford Mathematics Tournament, 11

Tags: function
If $ a@b\equal{}\frac{a\plus{}b}{a\minus{}b}$, find $ n$ such that $ 3@n\equal{}3$.

1985 Traian Lălescu, 2.1

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a bounded function in some neighbourhood of $ 0, $ such that there are three real numbers $ a>0, b>1, c $ with the property that $$ f(ax)=bf(x)+c,\quad\forall x\in\mathbb{R} . $$ Show that $ f $ is continuous at $ 0 $ if and only if $ c=0. $

2007 Putnam, 2

Suppose that $ f: [0,1]\to\mathbb{R}$ has a continuous derivative and that $ \int_0^1f(x)\,dx\equal{}0.$ Prove that for every $ \alpha\in(0,1),$ \[ \left|\int_0^{\alpha}f(x)\,dx\right|\le\frac18\max_{0\le x\le 1}|f'(x)|\]

2009 CHKMO, 1

Let $ f(x) \equal{} c_m x^m \plus{} c_{m\minus{}1} x^{m\minus{}1} \plus{}...\plus{} c_1 x \plus{} c_0$, where each $ c_i$ is a non-zero integer. Define a sequence $ \{ a_n \}$ by $ a_1 \equal{} 0$ and $ a_{n\plus{}1} \equal{} f(a_n)$ for all positive integers $ n$. (a) Let $ i$ and $ j$ be positive integers with $ i<j$. Show that $ a_{j\plus{}1} \minus{} a_j$ is a multiple of $ a_{i\plus{}1} \minus{} a_i$. (b) Show that $ a_{2008} \neq 0$

Russian TST 2018, P3

Tags: function , algebra
A function $f:\mathbb{R} \to \mathbb{R}$ has the following property: $$\text{For every } x,y \in \mathbb{R} \text{ such that }(f(x)+y)(f(y)+x) > 0, \text{ we have } f(x)+y = f(y)+x.$$ Prove that $f(x)+y \leq f(y)+x$ whenever $x>y$.

2008 Romania Team Selection Test, 1

Let $ n \geq 3$ be an odd integer. Determine the maximum value of \[ \sqrt{|x_{1}\minus{}x_{2}|}\plus{}\sqrt{|x_{2}\minus{}x_{3}|}\plus{}\ldots\plus{}\sqrt{|x_{n\minus{}1}\minus{}x_{n}|}\plus{}\sqrt{|x_{n}\minus{}x_{1}|},\] where $ x_{i}$ are positive real numbers from the interval $ [0,1]$.

1993 Baltic Way, 15

On each face of two dice some positive integer is written. The two dice are thrown and the numbers on the top face are added. Determine whether one can select the integers on the faces so that the possible sums are $2,3,4,5,6,7,8,9,10,11,12,13$, all equally likely?

1989 IberoAmerican, 2

Tags: function , algebra
Let the function $f$ be defined on the set $\mathbb{N}$ such that $\text{(i)}\ \ \quad f(1)=1$ $\text{(ii)}\ \quad f(2n+1)=f(2n)+1$ $\text{(iii)}\quad f(2n)=3f(n)$ Determine the set of values taken $f$.

1977 AMC 12/AHSME, 16

If $i^2 = -1$, then the sum \[ \cos{45^\circ} + i\cos{135^\circ} + \cdots + i^n\cos{(45 + 90n)^\circ} \] \[ + \cdots + i^{40}\cos{3645^\circ} \] equals \[ \text{(A)}\ \frac{\sqrt{2}}{2} \qquad \text{(B)}\ -10i\sqrt{2} \qquad \text{(C)}\ \frac{21\sqrt{2}}{2} \] \[ \text{(D)}\ \frac{\sqrt{2}}{2}(21 - 20i) \qquad \text{(E)}\ \frac{\sqrt{2}}{2}(21 + 20i) \]

2014 Online Math Open Problems, 26

Let $ABC$ be a triangle with $AB=26$, $AC=28$, $BC=30$. Let $X$, $Y$, $Z$ be the midpoints of arcs $BC$, $CA$, $AB$ (not containing the opposite vertices) respectively on the circumcircle of $ABC$. Let $P$ be the midpoint of arc $BC$ containing point $A$. Suppose lines $BP$ and $XZ$ meet at $M$ , while lines $CP$ and $XY$ meet at $N$. Find the square of the distance from $X$ to $MN$. [i]Proposed by Michael Kural[/i]

1993 Brazil National Olympiad, 5

Find at least one function $f: \mathbb R \rightarrow \mathbb R$ such that $f(0)=0$ and $f(2x+1) = 3f(x) + 5$ for any real $x$.

2012 IFYM, Sozopol, 6

Tags: function , algebra
Determine all functions $f:\Bbb{R}\to\Bbb{R}$ such that \[ f(x^2 + f(y)) = (f(x) + y^2)^ 2 \] , for all $x,y\in \Bbb{R}.$

2014 PUMaC Team, 7

Tags: function
Let us consider a function $f:\mathbb{N}\to\mathbb{N}$ for which $f(1)=1$, $f(2n)=f(n)$ and $f(2n+1)=f(2n)+1$. Find the number of values at which the maximum value of $f(n)$ is attained for integer $n$ satisfying $0<n<2014$.

2014 Iran MO (3rd Round), 7

We have a machine that has an input and an output. The input is a letter from the finite set $I$ and the output is a lamp that at each moment has one of the colors of the set $C=\{c_1,\dots,c_p\}$. At each moment the machine has an inner state that is one of the $n$ members of finite set $S$. The function $o: S \rightarrow C$ is a surjective function defining that at each state, what color must the lamp be, and the function $t:S \times I \rightarrow S$ is a function defining how does giving each input at each state changes the state. We only shall see the lamp and we have no direct information from the state of the car at current moment. In other words a machine is $M=(S,I,C,o,t)$ such that $S,I,C$ are finite, $t:S \times I \rightarrow S$ , and $o:S \rightarrow C$ is surjective. It is guaranteed that for each two different inner states, there's a sequence of inputs such that the color of the lamp after giving the sequence to the machine at the first state is different from the color of the lamp after giving the sequence to the machine at the second state. (a) The machine $M$ has $n$ different inner states. Prove that for each two different inner states, there's a sequence of inputs of length no more than $n-p$ such that the color of the lamp after giving the sequence to the machine at the first state is different from the color of the lamp after giving the sequence to the machine at the second state. (b) Prove that for a machine $M$ with $n$ different inner states, there exists an algorithm with no more than $n^2$ inputs that starting at any unknown inner state, at the end of the algorithm the state of the machine at that moment is known. Can you prove the above claim for $\frac{n^2}{2}$?

2012 Harvard-MIT Mathematics Tournament, 1

Tags: hmmt , function
Let $f$ be the function such that \[f(x)=\begin{cases}2x & \text{if }x\leq \frac{1}{2}\\2-2x & \text{if }x>\frac{1}{2}\end{cases}\] What is the total length of the graph of $\underbrace{f(f(\ldots f}_{2012\text{ }f's}(x)\ldots))$ from $x=0$ to $x=1?$

2010 Contests, 1

Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that for all $x, y\in\mathbb{R}$, we have \[f(x+y)+f(x)f(y)=f(xy)+(y+1)f(x)+(x+1)f(y).\]

2019 LIMIT Category A, Problem 10

The number of maps $f$ from $1,2,3$ into the set $1,2,3,4,5$ such that $f(i)\le f(j)$ whenever $i\le j$ is $\textbf{(A)}~60$ $\textbf{(B)}~50$ $\textbf{(C)}~35$ $\textbf{(D)}~30$

2014 ELMO Shortlist, 5

Tags: function , algebra
Let $\mathbb R^\ast$ denote the set of nonzero reals. Find all functions $f: \mathbb R^\ast \to \mathbb R^\ast$ satisfying \[ f(x^2+y)+1=f(x^2+1)+\frac{f(xy)}{f(x)} \] for all $x,y \in \mathbb R^\ast$ with $x^2+y\neq 0$. [i]Proposed by Ryan Alweiss[/i]

2017 Thailand TSTST, 2

Suppose that for some $m,n\in\mathbb{N}$ we have $\varphi (5^m-1)=5^n-1$, where $\varphi$ denotes the Euler function. Show that $(m,n)>1$.

2019 ELMO Shortlist, A5

Carl chooses a [i]functional expression[/i]* $E$ which is a finite nonempty string formed from a set $x_1, x_2, \dots$ of variables and applications of a function $f$, together with addition, subtraction, multiplication (but not division), and fixed real constants. He then considers the equation $E = 0$, and lets $S$ denote the set of functions $f \colon \mathbb R \to \mathbb R$ such that the equation holds for any choices of real numbers $x_1, x_2, \dots$. (For example, if Carl chooses the functional equation $$ f(2f(x_1)+x_2) - 2f(x_1)-x_2 = 0, $$ then $S$ consists of one function, the identity function. (a) Let $X$ denote the set of functions with domain $\mathbb R$ and image exactly $\mathbb Z$. Show that Carl can choose his functional equation such that $S$ is nonempty but $S \subseteq X$. (b) Can Carl choose his functional equation such that $|S|=1$ and $S \subseteq X$? *These can be defined formally in the following way: the set of functional expressions is the minimal one (by inclusion) such that (i) any fixed real constant is a functional expression, (ii) for any positive integer $i$, the variable $x_i$ is a functional expression, and (iii) if $V$ and $W$ are functional expressions, then so are $f(V)$, $V+W$, $V-W$, and $V \cdot W$. [i]Proposed by Carl Schildkraut[/i]

PEN K Problems, 15

Find all functions $f: \mathbb{Z}\to \mathbb{Z}$ such that for all $m,n\in \mathbb{Z}$: \[f(m+f(n))=f(m)-n.\]

2010 Tournament Of Towns, 3

Consider a composition of functions $\sin, \cos, \tan, \cot, \arcsin, \arccos, \arctan, \arccos$, applied to the number $1$. Each function may be applied arbitrarily many times and in any order. (ex: $\sin \cos \arcsin \cos \sin\cdots 1$). Can one obtain the number $2010$ in this way?