Found problems: 4776
2007 IMC, 4
Let $ G$ be a finite group. For arbitrary sets $ U, V, W \subset G$, denote by $ N_{UVW}$ the number of triples $ (x, y, z) \in U \times V \times W$ for which $ xyz$ is the unity .
Suppose that $ G$ is partitioned into three sets $ A, B$ and $ C$ (i.e. sets $ A, B, C$ are pairwise disjoint and $ G = A \cup B \cup C$). Prove that $ N_{ABC}= N_{CBA}.$
2010 Danube Mathematical Olympiad, 5
Let $n\ge3$ be a positive integer. Find the real numbers $x_1\ge0,\ldots,x_n\ge 0$, with $x_1+x_2+\ldots +x_n=n$, for which the expression \[(n-1)(x_1^2+x_2^2+\ldots+x_n^2)+nx_1x_2\ldots x_n\] takes a minimal value.
2009 Harvard-MIT Mathematics Tournament, 4
How many functions $f : f\{1, 2, 3, 4, 5\}\longrightarrow\{1, 2, 3, 4, 5\}$ satisfy $f(f(x)) = f(x)$ for all $x\in\{ 1,2, 3, 4, 5\}$?
2006 Vietnam National Olympiad, 1
Solve the following system of equations in real numbers:
\[ \begin{cases} \sqrt{x^2-2x+6}\cdot \log_{3}(6-y) =x \\ \sqrt{y^2-2y+6}\cdot \log_{3}(6-z)=y \\ \sqrt{z^2-2z+6}\cdot\log_{3}(6-x)=z \end{cases}. \]
2019 China Team Selection Test, 5
Determine all functions $f: \mathbb{Q} \to \mathbb{Q}$ such that
$$f(2xy + \frac{1}{2}) + f(x-y) = 4f(x)f(y) + \frac{1}{2}$$
for all $x,y \in \mathbb{Q}$.
1988 Iran MO (2nd round), 3
Let $f : \mathbb N \to \mathbb N$ be a function satisfying
\[f(f(m)+f(n))=m+n, \quad \forall m,n \in \mathbb N.\]
Prove that $f(x)=x$ for all $x \in \mathbb N$.
2011 Mongolia Team Selection Test, 2
Mongolia TST 2011 Test 1 #2
Let $p$ be a prime number. Prove that:
$\sum_{k=0}^p (-1)^k \dbinom{p}{k} \dbinom{p+k}{k} \equiv -1 (\mod p^3)$
(proposed by B. Batbayasgalan, inspired by Putnam olympiad problem)
Note: I believe they meant to say $p>2$ as well.
1989 IMO Longlists, 13
Let $ n \leq 44, n \in \mathbb{N}.$ Prove that for any function $ f$ defined over $ \mathbb{N}^2$ whose images are in the set $ \{1, 2, \ldots , n\},$ there are four ordered pairs $ (i, j), (i, k), (l, j),$ and $ (l, k)$ such that \[ f(i, j) \equal{} f(i, k) \equal{} f(l, j) \equal{} f(l, k),\] in which $ i, j, k, l$ are chosen in such a way that there are natural numbers $ m, p$ that satisfy \[ 1989m \leq i < l < 1989 \plus{} 1989m\] and \[ 1989p \leq j < k < 1989 \plus{} 1989p.\]
1997 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 5
Determine $ m > 0$ so that $ x^4 \minus{} (3m\plus{}2)x^2 \plus{} m^2 \equal{} 0$ has four real solutions forming an arithmetic series: i.e., that the solutions may be written $ a, a\plus{}b, a\plus{}2b,$ and $ a\plus{}3b$ for suitable $ a$ and $ b$.
A. 1
B. 3
C. 7
D. 12
E. None of these
2016 Mathematical Talent Reward Programme, MCQ: P 9
$f$ be a function satisfying $2f(x)+3f(-x)=x^2+5x$. Find $f(7)$
[list=1]
[*] $-\frac{105}{4}$
[*] $-\frac{126}{5}$
[*] $-\frac{120}{7}$
[*] $-\frac{132}{7}$
[/list]
2017 Ukraine Team Selection Test, 2
Denote by $\mathbb{N}$ the set of all positive integers. Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all positive integers $m$ and $n$, the integer $f(m)+f(n)-mn$ is nonzero and divides $mf(m)+nf(n)$.
[i]Proposed by Dorlir Ahmeti, Albania[/i]
2021 Israel Olympic Revenge, 1
Let $\mathbb N$ be the set of positive integers. Find all functions $f\colon\mathbb N\to\mathbb N$ such that $$\frac{f(x)-f(y)+x+y}{x-y+1}$$ is an integer, for all positive integers $x,y$ with $x>y$.
1990 Vietnam Team Selection Test, 3
Prove that there is no real function $ f(x)$ satisfying $ f\left(f(x)\right) \equal{} x^2 \minus{} 2$ for all real number $ x$.
2012 Hitotsubashi University Entrance Examination, 2
Let $a\geq 0$ be constant. Find the number of Intersection points of the graph of the function $y=x^3-3a^2x$ and the figure expressed by the equation $|x|+|y|=2$.
2009 Harvard-MIT Mathematics Tournament, 10
Let $a$ and $b$ be real numbers satisfying $a>b>0$. Evaluate \[\int_0^{2\pi}\dfrac{1}{a+b\cos(\theta)}d\theta.\] Express your answer in terms of $a$ and $b$.
2013 Bangladesh Mathematical Olympiad, 2
Higher Secondary P2
Let $g$ be a function from the set of ordered pairs of real numbers to the same set such that $g(x, y)=-g(y, x)$ for all real numbers $x$ and $y$. Find a real number $r$ such that $g(x, x)=r$ for all real numbers $x$.
1983 IMO Longlists, 12
The number $0$ or $1$ is to be assigned to each of the $n$ vertices of a regular polygon. In how many different ways can this be done (if we consider two assignments that can be obtained one from the other through rotation in the plane of the polygon to be identical)?
2011 Germany Team Selection Test, 3
We call a function $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ [i]good[/i] if for all $x,y \in \mathbb{Q}^+$ we have: $$f(x)+f(y)\geq 4f(x+y).$$
a) Prove that for all good functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ and $x,y,z \in \mathbb{Q}^+$ $$f(x)+f(y)+f(z) \geq 8f(x+y+z)$$
b) Does there exists a good functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ and $x,y,z \in \mathbb{Q}^+$ such that $$f(x)+f(y)+f(z) < 9f(x+y+z) ?$$
2019 Federal Competition For Advanced Students, P1, 4
Find all pairs $(a, b)$ of real numbers such that $a \cdot \lfloor b \cdot n\rfloor = b \cdot \lfloor a \cdot n \rfloor$ applies to all positive integers$ n$.
(For a real number $x, \lfloor x\rfloor$ denotes the largest integer that is less than or equal to $x$.)
2012 China Team Selection Test, 3
Given an integer $n\ge 2$, a function $f:\mathbb{Z}\rightarrow \{1,2,\ldots,n\}$ is called [i]good[/i], if for any integer $k,1\le k\le n-1$ there exists an integer $j(k)$ such that for every integer $m$ we have
\[f(m+j(k))\equiv f(m+k)-f(m) \pmod{n+1}. \]
Find the number of [i]good[/i] functions.
1998 Austrian-Polish Competition, 3
Find all pairs of real numbers $(x, y)$ satisfying the following system of
equations
$2-x^{3}=y, 2-y^{3}=x$.
2009 Germany Team Selection Test, 2
Let $ S\subseteq\mathbb{R}$ be a set of real numbers. We say that a pair $ (f, g)$ of functions from $ S$ into $ S$ is a [i]Spanish Couple[/i] on $ S$, if they satisfy the following conditions:
(i) Both functions are strictly increasing, i.e. $ f(x) < f(y)$ and $ g(x) < g(y)$ for all $ x$, $ y\in S$ with $ x < y$;
(ii) The inequality $ f\left(g\left(g\left(x\right)\right)\right) < g\left(f\left(x\right)\right)$ holds for all $ x\in S$.
Decide whether there exists a Spanish Couple [list][*] on the set $ S \equal{} \mathbb{N}$ of positive integers; [*] on the set $ S \equal{} \{a \minus{} \frac {1}{b}: a, b\in\mathbb{N}\}$[/list]
[i]Proposed by Hans Zantema, Netherlands[/i]
1994 IberoAmerican, 3
In each square of an $n\times{n}$ grid there is a lamp. If the lamp is touched it changes its state every lamp in the same row and every lamp in the same column (the one that are on are turned off and viceversa). At the begin, all the lamps are off. Show that lways is possible, with an appropriated sequence of touches, that all the the lamps on the board end on and find, in function of $n$ the minimal number of touches that are necessary to turn on every lamp.
1995 Putnam, 3
To each number with $n^2$ digits, we associate the $n\times n$ determinant of the matrix obtained by writing the digits of the number in order along the rows. For example : $8617\mapsto \det \left(\begin{matrix}{\;8}& 6\;\\ \;1 &{ 7\;}\end{matrix}\right)=50$.
Find, as a function of $n$, the sum of all the determinants associated with $n^2$-digit integers. (Leading digits are assumed to be nonzero; for example, for $n = 2$, there are $9000$ determinants.)
1976 IMO Longlists, 29
Let $I = (0, 1]$ be the unit interval of the real line. For a given number $a \in (0, 1)$ we define a map $T : I \to I$ by the formula
if
\[ T (x, y) = \begin{cases} x + (1 - a),&\mbox{ if } 0< x \leq a,\\ \text{ } \\ x - a, & \mbox{ if } a < x \leq 1.\end{cases} \]
Show that for every interval $J \subset I$ there exists an integer $n > 0$ such that $T^n(J) \cap J \neq \emptyset.$