Found problems: 4776
2011 IMC, 4
Let $A_1,A_2,\dots, A_n$ be finite, nonempty sets. Define the function
\[f(t)=\sum_{k=1}^n \sum_{1\leq i_1<i_2<\dots<i_k\leq n} (-1)^{k-1}t^{|A_{i_1}\cup A_{i_2}\cup \dots\cup A_{i_k}|}.\]
Prove that $f$ is nondecreasing on $[0,1].$
($|A|$ denotes the number of elements in $A.$)
2009 IMO, 5
Determine all functions $ f$ from the set of positive integers to the set of positive integers such that, for all positive integers $ a$ and $ b$, there exists a non-degenerate triangle with sides of lengths
\[ a, f(b) \text{ and } f(b \plus{} f(a) \minus{} 1).\]
(A triangle is non-degenerate if its vertices are not collinear.)
[i]Proposed by Bruno Le Floch, France[/i]
1960 Putnam, B7
Let $g(t)$ and $h(t)$ be real, continuous functions for $t\geq 0.$ Show that any function $v(t)$ satisfying the differential inequality
$$\frac{dv}{dt}+g(t)v \geq h(t),\;\; v(t)=c,$$
satisfies the further inequality $v(t)\geq u(t),$ where
$$\frac{du}{dt}+g(t)u = h(t),\;\; u(t)=c.$$
From this, conclude that for sufficiently small $t>0,$ the solution of
$$\frac{dv}{dt}+g(t)v = v^2 ,\;\; v(t)=c$$
may be written
$$v=\max_{w(t)} \left( c e^{- \int_{0}^{t} |g(s)-2w(s)| \, ds} -\int_{0}^{t} e^{-\int_{0}^{t} |g(s')-2w(s')| \, ds'} w(s)^{2} ds \right),$$
where the maximum is over all continuous functions $w(t)$ defined over some $t$-interval $[0,t_0 ].$
1960 AMC 12/AHSME, 24
If $\log_{2x}216 = x$, where $x$ is real, then $x$ is:
$ \textbf{(A)}\ \text{A non-square, non-cube integer} \qquad$
$\textbf{(B)}\ \text{A non-square, non-cube, non-integral rational number} \qquad$
$\textbf{(C)}\ \text{An irrational number} \qquad$
$\textbf{(D)}\ \text{A perfect square}\qquad$
$\textbf{(E)}\ \text{A perfect cube} $
2009 HMNT, 3
What is the period of the function $f(x)=\cos(\cos(x))$?
2011 Romania National Olympiad, 1
Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ a function having the property that
$$ \left| f(x+y)+\sin x+\sin y \right|\le 2, $$
for all real numbers $ x,y. $
[b]a)[/b] Prove that $ \left| f(x) \right|\le 1+\cos x, $ for all real numbers $ x. $
[b]b)[/b] Give an example of what $ f $ may be, if the interval $ \left( -\pi ,\pi \right) $ is included in its [url=https://en.wikipedia.org/wiki/Support_(mathematics)]support.[/url]
2015 APMO, 2
Let $S = \{2, 3, 4, \ldots\}$ denote the set of integers that are greater than or equal to $2$. Does there exist a function $f : S \to S$ such that \[f (a)f (b) = f (a^2 b^2 )\text{ for all }a, b \in S\text{ with }a \ne b?\]
[i]Proposed by Angelo Di Pasquale, Australia[/i]
2023 Romania National Olympiad, 3
Let $a,b \in \mathbb{R}$ with $a < b,$ 2 real numbers. We say that $f: [a,b] \rightarrow \mathbb{R}$ has property $(P)$ if there is an integrable function on $[a,b]$ with property that
\[
f(x) - f \left( \frac{x + a}{2} \right) = f \left( \frac{x + b}{2} \right) - f(x) , \forall x \in [a,b].
\]
Show that for all real number $t$ there exist a unique function $f:[a,b] \rightarrow \mathbb{R}$ with property $(P),$ such that $\int_{a}^{b} f(x) \text{dx} = t.$
2010 Today's Calculation Of Integral, 648
Consider a function real-valued function with $C^{\infty}$-class on $\mathbb{R}$ such that:
(a) $f(0)=\frac{df}{dx}(0)=0,\ \frac{d^2f}{dx^2}(0)\neq 0.$
(b) For $x\neq 0,\ f(x)>0.$
Judge whether the following integrals $(i),\ (ii)$ converge or diverge, justify your answer.
$(i)$ \[\int\int_{|x_1|^2+|x_2|^2\leq 1} \frac{dx_1dx_2}{f(x_1)+f(x_2)}.\]
$(ii)$ \[\int\int_{|x_1|^2+|x_2|^2+|x_3|^2\leq 1} \frac{dx_1dx_2dx_3}{f(x_1)+f(x_2)+f(x_3)}.\]
[i]2010 Kyoto University, Master Course in Mathematics[/i]
2011 Tokio University Entry Examination, 6
(1) Let $x>0,\ y$ be real numbers. For variable $t$, find the difference of Maximum and minimum value of the quadratic function $f(t)=xt^2+yt$ in $0\leq t\leq 1$.
(2) Let $S$ be the domain of the points $(x,\ y)$ in the coordinate plane forming the following condition:
For $x>0$ and all real numbers $t$ with $0\leq t\leq 1$ , there exists real number $z$ for which $0\leq xt^2+yt+z\leq 1$ .
Sketch the outline of $S$.
(3) Let $V$ be the domain of the points $(x,\ y,\ z) $ in the coordinate space forming the following condition:
For $0\leq x\leq 1$ and for all real numbers $t$ with $0\leq t\leq 1$, $0\leq xt^2+yt+z\leq 1$ holds.
Find the volume of $V$.
[i]2011 Tokyo University entrance exam/Science, Problem 6[/i]
2023 ISI Entrance UGB, 8
Let $f \colon [0,1] \to \mathbb{R}$ be a continuous function which is differentiable on $(0,1)$. Prove that either $f(x) = ax + b$ for all $x \in [0,1]$ for some constants $a,b \in \mathbb{R}$ or there exists $t \in (0,1)$ such that $|f(1) - f(0)| < |f'(t)|$.
2005 ISI B.Stat Entrance Exam, 6
Let $f$ be a function defined on $(0, \infty )$ as follows:
\[f(x)=x+\frac1x\]
Let $h$ be a function defined for all $x \in (0,1)$ as
\[h(x)=\frac{x^4}{(1-x)^6}\]
Suppose that $g(x)=f(h(x))$ for all $x \in (0,1)$.
(a) Show that $h$ is a strictly increasing function.
(b) Show that there exists a real number $x_0 \in (0,1)$ such that $g$ is strictly decreasing in the interval $(0,x_0]$ and strictly increasing in the interval $[x_0,1)$.
2010 Germany Team Selection Test, 3
Let $f$ be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers $x$ and $y$ such that \[f\left(x-f(y)\right)>yf(x)+x\]
[i]Proposed by Igor Voronovich, Belarus[/i]
2003 Baltic Way, 1
Find all functions $f:\mathbb{Q}^{+}\rightarrow \mathbb{Q}^{+}$ which for all $x \in \mathbb{Q}^{+}$ fulfil
\[f\left(\frac{1}{x}\right)=f(x) \ \ \text{and} \ \ \left(1+\frac{1}{x}\right)f(x)=f(x+1). \]
2006 Bosnia and Herzegovina Team Selection Test, 6
Let $a_1$, $a_2$,...,$a_n$ be constant real numbers and $x$ be variable real number $x$. Let $f(x)=cos(a_1+x)+\frac{cos(a_2+x)}{2}+\frac{cos(a_3+x)}{2^2}+...+\frac{cos(a_n+x)}{2^{n-1}}$. If $f(x_1)=f(x_2)=0$, prove that $x_1-x_2=m\pi$, where $m$ is integer.
2004 India IMO Training Camp, 3
Determine all functionf $f : \mathbb{R} \mapsto \mathbb{R}$ such that
\[ f(x+y) = f(x)f(y) - c \sin{x} \sin{y} \] for all reals $x,y$ where $c> 1$ is a given constant.
1991 Dutch Mathematical Olympiad, 1
Prove that for any three positive real numbers $ a,b,c, \frac{1}{a\plus{}b}\plus{}\frac{1}{b\plus{}c}\plus{}\frac{1}{c\plus{}a} \ge \frac{9}{2} \cdot \frac{1}{a\plus{}b\plus{}c}$.
2006 Turkey MO (2nd round), 3
Find all the triangles such that its side lenghts, area and its angles' measures (in degrees) are rational.
2018 ELMO Shortlist, 1
Let $f:\mathbb{R}\to\mathbb{R}$ be a bijective function. Does there always exist an infinite number of functions $g:\mathbb{R}\to\mathbb{R}$ such that $f(g(x))=g(f(x))$ for all $x\in\mathbb{R}$?
[i]Proposed by Daniel Liu[/i]
1987 Traian Lălescu, 1.3
Let be three polynomials of degree two $ p_1,p_2,p_3\in\mathbb{R} [X] $ and the function
$$ f:\mathbb{R}\longrightarrow\mathbb{R} ,\quad f(x)=\max\left( p_1(x),p_2(x),p_3(x)\right) . $$
Then, $ f $ is differentiable if and only if any of these three polynomials dominates the other two.
1990 Greece National Olympiad, 3
Find all functions $f: \mathbb{R}\to\mathbb{R}$ that satisfy $y^2f(x)(f(x)-2x)\le (1-xy)(1+xy) $ for any $x,y \in\mathbb{R}$.
2013 Balkan MO Shortlist, A6
Let $S$ be the set of positive real numbers. Find all functions $f\colon S^3 \to S$ such that, for all positive real numbers $x$, $y$, $z$ and $k$, the following three conditions are satisfied:
(a) $xf(x,y,z) = zf(z,y,x)$,
(b) $f(x, ky, k^2z) = kf(x,y,z)$,
(c) $f(1, k, k+1) = k+1$.
([i]United Kingdom[/i])
2005 Junior Balkan Team Selection Tests - Moldova, 8
The families of second degree functions $f_m, g_m: R\to R, $ are considered , $f_m (x) = (m^2 + 1) x^2 + 3mx + m^2 - 1$, $g_m (x) = m^2x^2 + mx - 1$, where $m$ is a real nonzero parameter.
Show that, for any function $h$ of the second degree with the property that $g_m (x) \le h (x) \le f_m (x)$ for any real $x$, there exists $\lambda \in [0, 1]$ which verifies the condition $h (x) = \lambda f_m (x) + (1- \lambda) g_m (x)$, whatever real $x$ is.
Today's calculation of integrals, 764
Find $\lim_{n\to\infty} \int_0^{\pi} e^{x}|\sin nx|dx.$
2002 AMC 10, 2
For the nonzero numbers $ a$, $ b$, $ c$, define
\[(a,b,c)\equal{}\frac{a}{b}\plus{}\frac{b}{c}\plus{}\frac{c}{a}.\]
Find $ (2,12,9)$.
$ \textbf{(A)}\ 4 \qquad
\textbf{(B)}\ 5 \qquad
\textbf{(C)}\ 6 \qquad
\textbf{(D)}\ 7 \qquad
\textbf{(E)}\ 8$