This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2005 Harvard-MIT Mathematics Tournament, 2

How many real numbers $x$ are solutions to the following equation? \[ 2003^x + 2004^x = 2005^x \]

PEN P Problems, 6

Show that every integer greater than $1$ can be written as a sum of two square-free integers.

2003 Putnam, 3

Find the minimum value of \[|\sin{x} + \cos{x} + \tan{x} + \cot{x} + \sec{x} + \csc{x}|\] for real numbers $x$.

2006 India National Olympiad, 5

In a cyclic quadrilateral $ABCD$, $AB=a$, $BC=b$, $CD=c$, $\angle ABC = 120^\circ$ and $\angle ABD = 30^\circ$. Prove that (1) $c \ge a + b$; (2) $|\sqrt{c + a} - \sqrt{c + b} | = \sqrt{c - a - b}$.

2003 Greece National Olympiad, 1

If $a, b, c, d$ are positive numbers satisfying $a^3 + b^3 +3ab = c + d = 1,$ prove that \[\left(a+\frac{1}{a}\right)^3+\left(b+\frac{1}{b}\right)^3+\left(c+\frac{1}{c}\right)^3+\left(d+\frac{1}{d}\right)^3\geq 40.\]

2010 Albania Team Selection Test, 2

Find all the continuous functions $f : \mathbb{R} \mapsto\mathbb{R}$ such that $\forall x,y \in \mathbb{R}$, $(1+f(x)f(y))f(x+y)=f(x)+f(y)$.

1976 Euclid, 3

Tags: parabola , function
Source: 1976 Euclid Part A Problem 3 ----- The minimum value of the function $2x^2+6x+7$ is $\textbf{(A) } 7 \qquad \textbf{(B) } \frac{5}{2} \qquad \textbf{(C) } \frac{9}{4} \qquad \textbf{(D) } -\frac{9}{2} \qquad \textbf{(E) } \frac{5}{4}$

2013 ELMO Shortlist, 1

Tags: algebra , function
Find all triples $(f,g,h)$ of injective functions from the set of real numbers to itself satisfying \begin{align*} f(x+f(y)) &= g(x) + h(y) \\ g(x+g(y)) &= h(x) + f(y) \\ h(x+h(y)) &= f(x) + g(y) \end{align*} for all real numbers $x$ and $y$. (We say a function $F$ is [i]injective[/i] if $F(a)\neq F(b)$ for any distinct real numbers $a$ and $b$.) [i]Proposed by Evan Chen[/i]

2020 Bulgaria Team Selection Test, 5

Given is a function $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $|f(x+y)-f(x)-f(y)|\leq 1$. Prove the existence of an additive function $g:\mathbb{R}\rightarrow \mathbb{R}$ (that is $g(x+y)=g(x)+g(y)$) such that $|f(x)-g(x)|\leq 1$ for any $x \in \mathbb{R}$

2004 National Olympiad First Round, 36

Tags: function
If the function $f$ satisfies the equation $f(x) + f\left ( \dfrac{1}{\sqrt[3]{1-x^3}}\right ) = x^3$ for every real $x \neq 1$, what is $f(-1)$? $ \textbf{(A)}\ -1 \qquad\textbf{(B)}\ \dfrac 14 \qquad\textbf{(C)}\ \dfrac 12 \qquad\textbf{(D)}\ \dfrac 74 \qquad\textbf{(E)}\ \text{None of above} $

2010 Contests, A2

Find all differentiable functions $f:\mathbb{R}\to\mathbb{R}$ such that \[f'(x)=\frac{f(x+n)-f(x)}n\] for all real numbers $x$ and all positive integers $n.$

1994 All-Russian Olympiad, 6

I'll post some nice combinatorics problems here, taken from the wonderful training book "Les olympiades de mathmatiques" (in French) written by Tarik Belhaj Soulami. Here goes the first one: Let $\mathbb{I}$ be a non-empty subset of $\mathbb{Z}$ and let $f$ and $g$ be two functions defined on $\mathbb{I}$. Let $m$ be the number of pairs $(x,\;y)$ for which $f(x) = g(y)$, let $n$ be the number of pairs $(x,\;y)$ for which $f(x) = f(y)$ and let $k$ be the number of pairs $(x,\;y)$ for which $g(x) = g(y)$. Show that \[2m \leq n + k.\]

2014 ELMO Shortlist, 3

We say a finite set $S$ of points in the plane is [i]very[/i] if for every point $X$ in $S$, there exists an inversion with center $X$ mapping every point in $S$ other than $X$ to another point in $S$ (possibly the same point). (a) Fix an integer $n$. Prove that if $n \ge 2$, then any line segment $\overline{AB}$ contains a unique very set $S$ of size $n$ such that $A, B \in S$. (b) Find the largest possible size of a very set not contained in any line. (Here, an [i]inversion[/i] with center $O$ and radius $r$ sends every point $P$ other than $O$ to the point $P'$ along ray $OP$ such that $OP\cdot OP' = r^2$.) [i]Proposed by Sammy Luo[/i]

2022 IMC, 1

Let $f: [0,1] \to (0, \infty)$ be an integrable function such that $f(x)f(1-x) = 1$ for all $x\in [0,1]$. Prove that $\int_0^1f(x)dx \geq 1$.

2004 Brazil Team Selection Test, Problem 3

Set $\mathbb Q_1=\{x\in\mathbb Q\mid x\ge1\}$. Suppose that a function $f:\mathbb Q_1\to\mathbb R$ satisfies the inequality $\left|f(x+y)-f(x)-f(y)\right|<\epsilon$ for all $x,y\in\mathbb Q_1$, where $\epsilon>0$ is given. Prove that there exists a real number $q$ such that $$\left|\frac{f(x)}x-q\right|<2\epsilon\qquad\text{for all }x\in\mathbb Q_1.$$

1999 Romania National Olympiad, 1

„œ‚Find all continuous functions $ f: \mathbb{R}\to [1,\infty)$ for wich there exists $ a\in\mathbb{R}$ and a positive integer $ k$ such that \[ f(x)f(2x)\cdot...\cdot f(nx)\leq an^k\] for all real $ x$ and all positive integers $ n$. [i]author :Radu Gologan[/i]

2017 Thailand TSTST, 4

Find all function $f:\mathbb{N}^*\rightarrow \mathbb{N}^*$ that satisfy: $(f(1))^3+(f(2))^3+...+(f(n))^3=(f(1)+f(2)+...+f(n))^2$

2021 China Team Selection Test, 5

Tags: algebra , function
Determine all $ f:R\rightarrow R $ such that $$ f(xf(y)+y^3)=yf(x)+f(y)^3 $$

2004 Tournament Of Towns, 1

Functions f and g are defined on the whole real line and are mutually inverse: g(f(x))=x, f(g(y))=y for all x, y. It is known that f can be written as a sum of periodic and linear functions: f(x)=kx+h(x) for some number k and a periodic function h(x). Show that g can also be written as a sum of periodic and linear functions. (A functions h(x) is called periodic if there exists a non-zero number d such that h(x+d)=h(x) for any x.)

1979 IMO Shortlist, 8

For all rational $x$ satisfying $0 \leq x < 1$, the functions $f$ is defined by \[f(x)=\begin{cases}\frac{f(2x)}{4},&\mbox{for }0 \leq x < \frac 12,\\ \frac 34+ \frac{f(2x - 1)}{4}, & \mbox{for } \frac 12 \leq x < 1.\end{cases}\] Given that $x = 0.b_1b_2b_3 \cdots $ is the binary representation of $x$, find, with proof, $f(x)$.

2018 District Olympiad, 4

Let $a < b$ be real numbers and let $f : (a, b) \to \mathbb{R}$ be a function such that the functions $g : (a, b) \to \mathbb{R}$, $g(x) = (x - a) f(x)$ and $h : (a, b) \to \mathbb{R}$, $h(x) = (x - b) f(x)$ are increasing. Show that the function $f$ is continuous on $(a, b)$.

2020 Jozsef Wildt International Math Competition, W33

Let $p\in\mathbb N,f:[0,1]\to(0,\infty)$ be a continuous function and $$a_n=\int^1_0x^p\sqrt[n]{f(x)}dx,n\in\mathbb N,n\ge2.$$ Demonstrate that: a) $\lim_{n\to\infty}a_n=\frac1{p+1}$ b) $\lim_{n\to\infty}((p+1)a_n)^n=\exp\left((p+1)\int^1_0x^p\ln f(x)dx\right)$ [i]Proposed by Nicolae Papacu[/i]

2014 Contests, 2

Find all continuous function $f:\mathbb{R}^{\geq 0}\rightarrow \mathbb{R}^{\geq 0}$ such that : \[f(xf(y))+f(f(y)) = f(x)f(y)+2 \: \: \forall x,y\in \mathbb{R}^{\geq 0}\] [i]Proposed by Mohammad Ahmadi[/i]

1996 IMC, 7

Prove that if $f:[0,1]\rightarrow[0,1]$ is a continuous function, then the sequence of iterates $x_{n+1}=f(x_{n})$ converges if and only if $$\lim_{n\to \infty}(x_{n+1}-x_{n})=0$$

2007 India IMO Training Camp, 3

Tags: algebra , function , ratio
Find all function(s) $f:\mathbb R\to\mathbb R$ satisfying the equation \[f(x+y)+f(x)f(y)=(1+y)f(x)+(1+x)f(y)+f(xy);\] For all $x,y\in\mathbb R.$