Found problems: 622
2017 MMATHS, 2
Suppose you are playing a game against Daniel. There are $2017$ chips on a table. During your turn, if you can write the number of chips on the table as a sum of two cubes of not necessarily distinct, nonnegative integers, then you win. Otherwise, you can take some number of chips between $1$ and $6$ inclusive off the table. (You may not leave fewer than $0$ chips on the table.) Daniel can also do the same on his turn. You make the first move, and you and Daniel always make the optimal move during turns. Who should win the game? Explain.
2021 Kyiv City MO Round 1, 7.2
Andriy and Olesya take turns (Andriy starts) in a $2 \times 1$ rectangle, drawing horizontal segments of length $2$ or vertical segments of length $1$, as shown in the figure below.
[img]https://i.ibb.co/qWqWxgh/Kyiv-MO-2021-Round-1-7-2.png[/img]
After each move, the value $P$ is calculated - the total perimeter of all small rectangles that are formed (i.e., those inside which no other segment passes). The winner is the one after whose move $P$ is divisible by $2021$ for the first time. Who has a winning strategy?
[i]Proposed by Bogdan Rublov[/i]
2019 Peru Cono Sur TST, P5
Azambuja writes a rational number $q$ on a blackboard. One operation is to delete $q$ and replace it by $q+1$; or by $q-1$; or by $\frac{q-1}{2q-1}$ if $q \neq \frac{1}{2}$. The final goal of Azambuja is to write the number $\frac{1}{2018}$ after performing a finite number of operations.
[b]a)[/b] Show that if the initial number written is $0$, then Azambuja cannot reach his goal.
[b]b)[/b] Find all initial numbers for which Azambuja can achieve his goal.
2020 Tournament Of Towns, 7
Gleb picked positive integers $N$ and $a$ ($a < N$). He wrote the number $a$ on a blackboard. Then each turn he did the following: he took the last number on the blackboard, divided the number $N$ by this last number with remainder and wrote the remainder onto the board. When he wrote the number $0$ onto the board, he stopped. Could he pick $N$ and $a$ such that the sum of the numbers on the blackboard would become greater than $100N$ ?
Ivan Mitrofanov
2000 Brazil Team Selection Test, Problem 3
Consider an equilateral triangle with every side divided by $n$ points into $n+1$ equal parts. We put a marker on every of the $3n$ division points. We draw lines parallel to the sides of the triangle through the division points, and this way divide the triangle into $(n+1)^2$ smaller ones.
Consider the following game: if there is a small triangle with exactly one vertex unoccupied, we put a marker on it and simultaneously take markers from the two its occupied vertices. We repeat this operation as long as it is possible.
(a) If $n\equiv1\pmod3$, show that we cannot manage that only one marker remains.
(b) If $n\equiv0$ or $n\equiv2\pmod3$, prove that we can finish the game leaving exactly one marker on the triangle.
2018 IMO, 4
A [i]site[/i] is any point $(x, y)$ in the plane such that $x$ and $y$ are both positive integers less than or equal to 20.
Initially, each of the 400 sites is unoccupied. Amy and Ben take turns placing stones with Amy going first. On her turn, Amy places a new red stone on an unoccupied site such that the distance between any two sites occupied by red stones is not equal to $\sqrt{5}$. On his turn, Ben places a new blue stone on any unoccupied site. (A site occupied by a blue stone is allowed to be at any distance from any other occupied site.) They stop as soon as a player cannot place a stone.
Find the greatest $K$ such that Amy can ensure that she places at least $K$ red stones, no matter how Ben places his blue stones.
[i]Proposed by Gurgen Asatryan, Armenia[/i]
2025 Bangladesh Mathematical Olympiad, P3
Two player are playing in an $100 \times 100$ grid. Initially the whole board is black. On $A$'s move, he selects $4 \times 4$ subgrid and color it white. On $B$'s move, he selects a $3 \times 3$ subgrid and colors it black. $A$ wants to make the whole board white. Can he do it?
[i]Proposed by S M A Nahian[/i]
2023 USAJMO, 5
A positive integer $a$ is selected, and some positive integers are written on a board. Alice and Bob play the following game. On Alice's turn, she must replace some integer $n$ on the board with $n+a$, and on Bob's turn he must replace some even integer $n$ on the board with $n/2$. Alice goes first and they alternate turns. If on his turn Bob has no valid moves, the game ends.
After analyzing the integers on the board, Bob realizes that, regardless of what moves Alice makes, he will be able to force the game to end eventually. Show that, in fact, for this value of $a$ and these integers on the board, the game is guaranteed to end regardless of Alice's or Bob's moves.
2017 OMMock - Mexico National Olympiad Mock Exam, 2
Alice and Bob play on an infinite board formed by equilateral triangles. In each turn, Alice first places a white token on an unoccupied cell, and then Bob places a black token on an unoccupied cell. Alice's goal is to eventually have $k$ white tokens on a line. Determine the maximum value of $k$ for which Alice can achieve this no matter how Bob plays.
[i]Proposed by Oriol Solé[/i]
2019 Denmark MO - Mohr Contest, 4
Georg writes a positive integer $a$ on a blackboard. As long as there is a number on the blackboard, he does the following each day:
$\bullet$ If the last digit in the number on the blackboard is less than or equal to $5$, he erases that last digit.
(If there is only this digit, the blackboard thus becomes empty.)
$\bullet$ Otherwise he erases the entire number and writes $9$ times the number.
Can Georg choose $a$ in such a way that the blackboard never becomes empty?
2019 Lusophon Mathematical Olympiad, 6
Two players Arnaldo and Betania play alternately, with Arnaldo being the first to play. Initially there are two piles of stones containing $x$ and $y$ stones respectively. In each play, it is possible to perform one of the following operations:
1. Choose two non-empty piles and take one stone from each pile.
2. Choose a pile with an odd amount of stones, take one of their stones and, if possible, split into two piles with the same amount of stones.
The player who cannot perform either of operations 1 and 2 loses.
Determine who has the winning strategy based on $x$ and $y$.
2000 Kazakhstan National Olympiad, 1
Two guys are playing the game "Sea Battle-2000". On the board $ 1 \times 200 $, they take turns placing the letter "$ S $" or "$ O $" on the empty squares of the board. The winner is the one who gets the word "$ SOS $" first. Prove that the second player wins when played correctly.
2010 Belarus Team Selection Test, 5.1
The following expression $x^{30} + *x^{29} +...+ *x+8 = 0$ is written on a blackboard. Two players $A$ and $B$ play the following game. $A$ starts the game. He replaces all the asterisks by the natural numbers from $1$ to $30$ (using each of them exactly once). Then player $B$ replace some of" $+$ "by ” $-$ "(by his own choice). The goal of $A$ is to get the equation having a real root greater than $10$, while the goal of $B$ is to get the equation having a real root less that or equal to $10$. If both of the players achieve their goals or nobody of them achieves his goal, then the result of the game is a draw. Otherwise, the player achieving his goal is a winner.
Who of the players wins if both of them play to win?
(I.Bliznets)
2014 BAMO, 5
A chess tournament took place between $2n+1$ players. Every player played every other player once, with no draws. In addition, each player had a numerical rating before the tournament began, with no two players having equal ratings. It turns out there were exactly $k$ games in which the lower-rated player beat the higher-rated player. Prove that there is some player who won no less than $n-\sqrt{2k}$ and no more than $n+\sqrt{2k}$ games.
2019 Saint Petersburg Mathematical Olympiad, 7
In a circle there are $2019$ plates, on each lies one cake. Petya and Vasya are playing a game. In one move, Petya points at a cake and calls number from $1$ to $16$, and Vasya moves the specified cake to the specified number of
check clockwise or counterclockwise (Vasya chooses the direction each time). Petya wants at least some $k$ pastries to accumulate on one of the plates and Vasya wants to stop him. What is the largest $k$ Petya can succeed?
2017 Czech And Slovak Olympiad III A, 1
There are $100$ diamonds on the pile, $50$ of which are genuine and $50$ false. We invited a peculiar expert who alone can recognize which are which. Every time we show him some three diamonds, he would pick two and tell (truthfully) how many of them are genuine . Decide whether we can surely detect all genuine diamonds regardless how the expert chooses the pairs to be considered.
2022 Saudi Arabia IMO TST, 1
There are a) $2022$, b) $2023$ plates placed around a round table and on each of them there is one coin. Alice and Bob are playing a game that proceeds in rounds indefinitely as follows. In each round, Alice first chooses a plate on which there is at least one coin. Then Bob moves one coin from this plate to one of the two adjacent plates, chosen by him. Determine whether it is possible for Bob to select his moves so that, no matter how Alice selects her moves, there are never more than two coins on any plate.
2020 Durer Math Competition Finals, 10
Soma has a tower of $63$ bricks , consisting of $6$ levels. On the $k$-th level from the top, there are $2k-1$ bricks (where $k = 1, 2, 3, 4, 5, 6$), and every brick which is not on the lowest level lies on precisely $2$ smaller bricks (which lie one level below) - see the figure. Soma takes away $7$ bricks from the tower, one by one. He can only remove a brick if there is no brick lying on it. In how many ways can he do this, if the order of removals is considered as well?
[img]https://cdn.artofproblemsolving.com/attachments/b/6/4b0ce36df21fba89708dd5897c43a077d86b5e.png[/img]
2020 Taiwan TST Round 1, 6
There are 60 empty boxes $B_1,\ldots,B_{60}$ in a row on a table and an unlimited supply of pebbles. Given a positive integer $n$, Alice and Bob play the following game.
In the first round, Alice takes $n$ pebbles and distributes them into the 60 boxes as she wishes. Each subsequent round consists of two steps:
(a) Bob chooses an integer $k$ with $1\leq k\leq 59$ and splits the boxes into the two groups $B_1,\ldots,B_k$ and $B_{k+1},\ldots,B_{60}$.
(b) Alice picks one of these two groups, adds one pebble to each box in that group, and removes one pebble from each box in the other group.
Bob wins if, at the end of any round, some box contains no pebbles. Find the smallest $n$ such that Alice can prevent Bob from winning.
[i]Czech Republic[/i]
1975 Bulgaria National Olympiad, Problem 5
Let the [i]subbishop[/i] (a bishop is the figure moving only by a diagonal) be a figure moving only by diagonal but only in the next cells (squares) of the chessboard. Find the maximal count of subbishops over a chessboard $n\times n$, no two of which are not attacking.
[i]V. Chukanov[/i]
2017 Australian MO, 3
Anna and Berta play a game in which they take turns in removing marbles from a table. Anna takes the first turn. When at the beginning of the turn there are $n\geq 1$ marbles on the table, then the player whose turn it is removes $k$ marbles, where $k\geq 1$ either is an even number with $k\leq \frac{n}{2}$ or an odd number with $\frac{n}{2}\leq k\leq n$. A player win the game if she removes the last marble from the table.
Determine the smallest number $N\geq 100000$ such that Berta can enforce a victory if there are exactly $N$ marbles on the tale in the beginning.
2018 Brazil National Olympiad, 2
Azambuja writes a rational number $q$ on a blackboard. One operation is to delete $q$ and replace it by $q+1$; or by $q-1$; or by $\frac{q-1}{2q-1}$ if $q \neq \frac{1}{2}$. The final goal of Azambuja is to write the number $\frac{1}{2018}$ after performing a finite number of operations.
[b]a)[/b] Show that if the initial number written is $0$, then Azambuja cannot reach his goal.
[b]b)[/b] Find all initial numbers for which Azambuja can achieve his goal.
2022 Germany Team Selection Test, 3
A hunter and an invisible rabbit play a game on an infinite square grid. First the hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter, and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent if they share an edge). The hunter wins if after some finite time either:[list][*]the rabbit cannot move; or
[*]the hunter can determine the cell in which the rabbit started.[/list]Decide whether there exists a winning strategy for the hunter.
[i]Proposed by Aron Thomas[/i]
2020 Balkan MO Shortlist, C3
Odin and Evelyn are playing a game, Odin going first. There are initially $3k$ empty boxes, for some given positive integer $k$. On each player’s turn, they can write a non-negative integer in an empty box, or erase a number in a box and replace it with a strictly smaller non-negative integer. However, Odin is only ever allowed to write odd numbers, and Evelyn is only allowed to write even numbers. The game ends when either one of the players cannot move, in which case the other player wins; or there are exactly $k$ boxes with the number $0$, in which case Evelyn wins if all other boxes contain the number $1$, and Odin wins otherwise. Who has a winning strategy?
$Agnijo \ Banerjee \ , United \ Kingdom$
2021 Austrian MO Regional Competition, 3
The numbers $1, 2, ..., 2020$ and $2021$ are written on a blackboard. The following operation is executed:
Two numbers are chosen, both are erased and replaced by the absolute value of their difference.
This operation is repeated until there is only one number left on the blackboard.
(a) Show that $2021$ can be the final number on the blackboard.
(b) Show that $2020$ cannot be the final number on the blackboard.
(Karl Czakler)