This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 622

2018 Bundeswettbewerb Mathematik, 1

Anja and Bernd take turns in removing stones from a heap, initially consisting of $n$ stones ($n \ge 2$). Anja begins, removing at least one but not all the stones. Afterwards, in each turn the player has to remove at least one stone and at most as many stones as removed in the preceding move. The player removing the last stone wins. Depending on the value of $n$, which player can ensure a win?

1994 IMO Shortlist, 5

$ 1994$ girls are seated at a round table. Initially one girl holds $ n$ tokens. Each turn a girl who is holding more than one token passes one token to each of her neighbours. a.) Show that if $ n < 1994$, the game must terminate. b.) Show that if $ n \equal{} 1994$ it cannot terminate.

2018 Pan-African Shortlist, C3

A game is played on an $m \times n$ chessboard. At the beginning, there is a coin on one of the squares. Two players take turns to move the coin to an adjacent square (horizontally or vertically). The coin may never be moved to a square that has been occupied before. If a player cannot move any more, he loses. Prove: [list] [*] If the size (number of squares) of the board is even, then the player to move first has a winning strategy, regardless of the initial position. [*] If the size of the board is odd, then the player to move first has a winning strategy if and only if the coin is initially placed on a square whose colour is not the same as the colour of the corners. [/list]

2014 Denmark MO - Mohr Contest, 2

Three gamblers play against each other for money. They each start by placing a pile of one-krone coins on the table, and from this point on the total number of coins on the table does not change. The ratio between the number of coins they start with is $6 : 5 : 4$. At the end of the game, the ratio of the number of coins they have is $7 : 6 : 5$ in some order. At the end of the game, one of the gamblers has three coins more than at the beginning. How many coins does this gambler have at the end?

2025 Kyiv City MO Round 1, Problem 2

All positive integers from \( 1 \) to \( 2025 \) are written on a board. Mykhailo and Oleksii play the following game. They take turns, starting with Mykhailo, erasing one of the numbers written on the board. The game ends when exactly two numbers remain on the board. If their sum is a perfect square of an integer, Mykhailo wins; otherwise, Oleksii wins. Who wins if both players play optimally? [i]Proposed by Fedir Yudin[/i]

2019 India IMO Training Camp, P3

Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$. Prove that Sisyphus cannot reach the aim in less than \[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \] turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )

Kvant 2021, M2559

A row of 2021 balls is given. Pasha and Vova play a game, taking turns to perform moves; Pasha begins. On each turn a boy should paint a non-painted ball in one of the three available colors: red, yellow, or green (initially all balls are non-painted). When all the balls are colored, Pasha wins, if there are three consecutive balls of different colors; otherwise Vova wins. Who has a winning strategy?

2015 239 Open Mathematical Olympiad, 6

The numbers $1,2,3,\dots,1000$ are written on the board. Patya and Vassya are playing a game. They take turn alternatively erasing a number from the board. Patya begins. If after a turn all numbers (maybe one) on the board be divisible by a natural number greater than $1$ the player who last played loses. If after some number of steps the only remaining number on the board be $1$ then they call it a draw. Determine the result of the game if they both play their best.

2018-IMOC, C5

Alice and Bob are playing the following game: They have an $8\times8$ chessboard. Initially, all grids are white. Each round, Alice chooses a white grid and paints it black. Then Bob chooses one of the neighbors of that grid and paints it black. Or he does nothing. After that, Alice may decide to continue the game or not. The goal of Alice is to maximize the number of connected components of black grids, on the other hand, Bob wants to minimize that number. If both of them are extremely smart, how many connected components will be in the end of the game?

1991 All Soviet Union Mathematical Olympiad, 536

$n$ numbers are written on a blackboard. Someone then repeatedly erases two numbers and writes half their arithmetic mean instead, until only a single number remains. If all the original numbers were $1$, show that the final number is not less than $\frac{1}{n}$.

2012 IMO Shortlist, C6

The [i]liar's guessing game[/i] is a game played between two players $A$ and $B$. The rules of the game depend on two positive integers $k$ and $n$ which are known to both players. At the start of the game $A$ chooses integers $x$ and $N$ with $1 \le x \le N.$ Player $A$ keeps $x$ secret, and truthfully tells $N$ to player $B$. Player $B$ now tries to obtain information about $x$ by asking player $A$ questions as follows: each question consists of $B$ specifying an arbitrary set $S$ of positive integers (possibly one specified in some previous question), and asking $A$ whether $x$ belongs to $S$. Player $B$ may ask as many questions as he wishes. After each question, player $A$ must immediately answer it with [i]yes[/i] or [i]no[/i], but is allowed to lie as many times as she wants; the only restriction is that, among any $k+1$ consecutive answers, at least one answer must be truthful. After $B$ has asked as many questions as he wants, he must specify a set $X$ of at most $n$ positive integers. If $x$ belongs to $X$, then $B$ wins; otherwise, he loses. Prove that: 1. If $n \ge 2^k,$ then $B$ can guarantee a win. 2. For all sufficiently large $k$, there exists an integer $n \ge (1.99)^k$ such that $B$ cannot guarantee a win. [i]Proposed by David Arthur, Canada[/i]

2018 Irish Math Olympiad, 1

Mary and Pat play the following number game. Mary picks an initial integer greater than $2017$. She then multiplies this number by $2017$ and adds $2$ to the result. Pat will add $2019$ to this new number and it will again be Mary’s turn. Both players will continue to take alternating turns. Mary will always multiply the current number by $2017$ and add $2$ to the result when it is her turn. Pat will always add $2019$ to the current number when it is his turn. Pat wins if any of the numbers obtained by either player is divisible by $2018$. Mary wants to prevent Pat from winning the game. Determine, with proof, the smallest initial integer Mary could choose in order to achieve this.

2011 Tournament of Towns, 5

A dragon gave a captured knight $100$ coins. Half of them are magical, but only dragon knows which are. Each day, the knight should divide the coins into two piles (not necessarily equal in size). The day when either magic coins or usual coins are spread equally between the piles, the dragon set the knight free. Can the knight guarantee himself a freedom in at most (a) $50$ days? (b) $25$ days?

2019 India IMO Training Camp, P3

Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$. Prove that Sisyphus cannot reach the aim in less than \[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \] turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )

1991 All Soviet Union Mathematical Olympiad, 545

The numbers $1, 2, 3, ... , n$ are written on a blackboard (where $n \ge 3$). A move is to replace two numbers by their sum and non-negative difference. A series of moves makes all the numbers equal $k$. Find all possible $k$

1984 All Soviet Union Mathematical Olympiad, 383

The teacher wrote on a blackboard: $$x^2 + 10x + 20$$ Then all the pupils in the class came up in turn and either decreased or increased by $1$ either the free coefficient or the coefficient at $x$, but not both. Finally they have obtained: $$x^2 + 20x + 10$$ Is it true that some time during the process there was written the square polynomial with the integer roots?

2019 Chile National Olympiad, 2

Javiera and Claudio play on a board consisting of a row with $2019$ cells. Claudio starts by placing a token anywhere on the board. Next Javiera says a natural number $k$, $1 \le k \le n$ and Claudio must move the token to the right or to the left at your choice $k$ squares and so on. Javiera wins if she manages to remove the piece that Claudio moves from the board. Determine the smallest $n$ such that Javiera always wins after a finite number of moves.

2009 Swedish Mathematical Competition, 6

On a table lie $289$ coins that form a square array $17 \times 17$. All coins are facing with the crown up. In one move, it is possible to reverse any five coins lying in a row: vertical, horizontal or diagonal. Is it possible that after a number of such moves, all the coins to be arranged with tails up?

1987 All Soviet Union Mathematical Olympiad, 455

Two players are writting in turn natural numbers not exceeding $p$. The rules forbid to write the divisors of the numbers already having been written. Those who cannot make his move looses. a) Who, and how, can win if $p=10$? b) Who wins if $p=1000$?

2021 South Africa National Olympiad, 6

Jacob and Laban take turns playing a game. Each of them starts with the list of square numbers $1, 4, 9, \dots, 2021^2$, and there is a whiteboard in front of them with the number $0$ on it. Jacob chooses a number $x^2$ from his list, removes it from his list, and replaces the number $W$ on the whiteboard with $W + x^2$. Laban then does the same with a number from his list, and the repeat back and forth until both of them have no more numbers in their list. Now every time that the number on the whiteboard is divisible by $4$ after a player has taken his turn, Jacob gets a sheep. Jacob wants to have as many sheep as possible. What is the greatest number $K$ such that Jacob can guarantee to get at least $K$ sheep by the end of the game, no matter how Laban plays?

2021 Dutch IMO TST, 1

Let $m$ and $n$ be natural numbers with $mn$ even. Jetze is going to cover an $m \times n$ board (consisting of $m$ rows and $n$ columns) with dominoes, so that every domino covers exactly two squares, dominos do not protrude or overlap, and all squares are covered by a domino. Merlin then moves all the dominoe color red or blue on the board. Find the smallest non-negative integer $V$ (in terms of $m$ and $n$) so that Merlin can always ensure that in each row the number squares covered by a red domino and the number of squares covered by a blue one dominoes are not more than $V$, no matter how Jetze covers the board.

2020 Argentina National Olympiad, 6

Let $n\ge 3$ be an integer. Lucas and Matías play a game in a regular $n$-sided polygon with a vertex marked as a trap. Initially Matías places a token at one vertex of the polygon. In each step, Lucas says a positive integer and Matías moves the token that number of vertices clockwise or counterclockwise, at his choice. a) Determine all the $n\ge 3$ such that Matías can locate the token and move it in such a way as to never fall into the trap, regardless of the numbers Lucas says. Give the strategy to Matías. b) Determine all the $n\ge 3$ such that Lucas can force Matías to fall into the trap. Give the strategy to Lucas. Note. The two players know the value of $n$ and see the polygon.

1998 Yugoslav Team Selection Test, Problem 1

From a deck of playing cards, four [i]threes[/i], four [i]fours[/i] and four [i]fives[/i] are selected and put down on a table with the main side up. Players $A$ and $B$ alternately take the cards one by one and put them on the pile. Player $A$ begins. A player after whose move the sum of values of the cards on the pile is (a) greater than 34; (b) greater than 37; loses the game. Which player has a winning strategy?

2014 Czech-Polish-Slovak Junior Match, 5

There is the number $1$ on the board at the beginning. If the number $a$ is written on the board, then we can also write a natural number $b$ such that $a + b + 1$ is a divisor of $a^2 + b^2 + 1$. Can any positive integer appear on the board after a certain time? Justify your answer.

2021 Olympic Revenge, 4

On a chessboard, Po controls a white queen and plays, in alternate turns, against an invisible black king (there are only those two pieces on the board). The king cannot move to a square where he would be in check, neither capture the queen. Every time the king makes a move, Po receives a message from beyond that tells which direction the king has moved (up, right, up-right, etc). His goal is to make the king unable to make a movement. Can Po reach his goal with at most $150$ moves, regardless the starting position of the pieces?