This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 150

1983 AMC 12/AHSME, 23

In the adjoining figure the five circles are tangent to one another consecutively and to the lines $L_1$ and $L_2$ ($L_1$ is the line that is above the circles and $L_2$ is the line that goes under the circles). If the radius of the largest circle is 18 and that of the smallest one is 8, then the radius of the middle circle is [asy] size(250);defaultpen(linewidth(0.7)); real alpha=5.797939254, x=71.191836; int i; for(i=0; i<5; i=i+1) { real r=8*(sqrt(6)/2)^i; draw(Circle((x+r)*dir(alpha), r)); x=x+2r; } real x=71.191836+40+20*sqrt(6), r=18; pair A=tangent(origin, (x+r)*dir(alpha), r, 1), B=tangent(origin, (x+r)*dir(alpha), r, 2); pair A1=300*dir(origin--A), B1=300*dir(origin--B); draw(B1--origin--A1); pair X=(69,-5), X1=reflect(origin, (x+r)*dir(alpha))*X, Y=(200,-5), Y1=reflect(origin, (x+r)*dir(alpha))*Y, Z=(130,0), Z1=reflect(origin, (x+r)*dir(alpha))*Z; clip(X--Y--Y1--X1--cycle); label("$L_2$", Z, S); label("$L_1$", Z1, dir(2*alpha)*dir(90));[/asy] $\text{(A)} \ 12 \qquad \text{(B)} \ 12.5 \qquad \text{(C)} \ 13 \qquad \text{(D)} \ 13.5 \qquad \text{(E)} \ 14$

2013 Math Prize For Girls Problems, 6

Three distinct real numbers form (in some order) a 3-term arithmetic sequence, and also form (in possibly a different order) a 3-term geometric sequence. Compute the greatest possible value of the common ratio of this geometric sequence.

2023 Thailand TST, 2

Find all positive integers $n \geqslant 2$ for which there exist $n$ real numbers $a_1<\cdots<a_n$ and a real number $r>0$ such that the $\tfrac{1}{2}n(n-1)$ differences $a_j-a_i$ for $1 \leqslant i<j \leqslant n$ are equal, in some order, to the numbers $r^1,r^2,\ldots,r^{\frac{1}{2}n(n-1)}$.

1967 AMC 12/AHSME, 36

Given a geometric progression of five terms, each a positive integer less than $100$. The sum of the five terms is $211$. If $S$ is the sum of those terms in the progression which are squares of integers, then $S$ is: $\textbf{(A)}\ 0\qquad \textbf{(B)}\ 91\qquad \textbf{(C)}\ 133\qquad \textbf{(D)}\ 195\qquad \textbf{(E)}\ 211$

2009 Regional Competition For Advanced Students, 4

Two infinite arithmetic progressions are called considerable different if the do not only differ by the absence of finitely many members at the beginning of one of the sequences. How many pairwise considerable different non-constant arithmetic progressions of positive integers that contain an infinite non-constant geometric progression $ (b_n)_{n\ge0}$ with $ b_2\equal{}40 \cdot 2009$ are there?

2022 AMC 10, 20

A four-term sequence is formed by adding each term of a four-term arithmetic sequence of positive integers to the corresponding term of a four-term geometric sequence of positive integers. The first three terms of the resulting four-term sequence are 57, 60, and 91. What is the fourth term of this sequence? $\textbf{(A) }190\qquad\textbf{(B) }194\qquad\textbf{(C) }198\qquad\textbf{(D) }202\qquad\textbf{(E) }206$

2024 AMC 12/AHSME, 12

The first three terms of a geometric sequence are the integers $a,\,720,$ and $b,$ where $a<720<b.$ What is the sum of the digits of the least possible value of $b?$ $\textbf{(A) } 9 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 18 \qquad \textbf{(E) } 21$

1972 AMC 12/AHSME, 16

There are two positive numbers that may be inserted between $3$ and $9$ such that the first three are in geometric progression while the last three are in arithmetic progression. The sum of those two positive numbers is $\textbf{(A) }13\textstyle\frac{1}{2}\qquad\textbf{(B) }11\frac{1}{4}\qquad\textbf{(C) }10\frac{1}{2}\qquad\textbf{(D) }10\qquad \textbf{(E) }9\frac{1}{2}$

1972 Canada National Olympiad, 10

What is the maximum number of terms in a geometric progression with common ratio greater than 1 whose entries all come from the set of integers between 100 and 1000 inclusive?

2013 Harvard-MIT Mathematics Tournament, 2

Let $\{a_n\}_{n\geq 1}$ be an arithmetic sequence and $\{g_n\}_{n\geq 1}$ be a geometric sequence such that the first four terms of $\{a_n+g_n\}$ are $0$, $0$, $1$, and $0$, in that order. What is the $10$th term of $\{a_n+g_n\}$?

2013 Purple Comet Problems, 16

A quarry wants to sell a large pile of gravel. At full price, the gravel would sell for $3200$ dollars. But during the first week the quarry only sells $60\%$ of the gravel at full price. The following week the quarry drops the price by $10\%$, and, again, it sells $60\%$ of the remaining gravel. Each week, thereafter, the quarry reduces the price by another $10\%$ and sells $60\%$ of the remaining gravel. This continues until there is only a handful of gravel left. How many dollars does the quarry collect for the sale of all its gravel?

2008 China Team Selection Test, 6

Find the maximal constant $ M$, such that for arbitrary integer $ n\geq 3,$ there exist two sequences of positive real number $ a_{1},a_{2},\cdots,a_{n},$ and $ b_{1},b_{2},\cdots,b_{n},$ satisfying (1):$ \sum_{k \equal{} 1}^{n}b_{k} \equal{} 1,2b_{k}\geq b_{k \minus{} 1} \plus{} b_{k \plus{} 1},k \equal{} 2,3,\cdots,n \minus{} 1;$ (2):$ a_{k}^2\leq 1 \plus{} \sum_{i \equal{} 1}^{k}a_{i}b_{i},k \equal{} 1,2,3,\cdots,n, a_{n}\equiv M$.

2002 AIME Problems, 3

It is given that $\log_{6}a+\log_{6}b+\log_{6}c=6,$ where $a,$ $b,$ and $c$ are positive integers that form an increasing geometric sequence and $b-a$ is the square of an integer. Find $a+b+c.$

2017 India PRMO, 16

Five distinct $2$-digit numbers are in a geometric progression. Find the middle term.

2024 Lusophon Mathematical Olympiad, 1

Determine all geometric progressions such that the product of the three first terms is $64$ and the sum of them is $14$.

2004 Nicolae Coculescu, 4

Let be a matrix $ A\in\mathcal{M}_2(\mathbb{R}) $ having the property that the numbers $ \det (A+X) ,\det (A^2+X^2) ,\det (A^3+X^3) $ are (in this order) in geometric progression, for any matrix $ X\in\mathcal{M}_2(\mathbb{R}) . $ Prove that $ A=0. $ [i]Marius Ghergu[/i]

2000 IberoAmerican, 1

From an infinite arithmetic progression $ 1,a_1,a_2,\dots$ of real numbers some terms are deleted, obtaining an infinite geometric progression $ 1,b_1,b_2,\dots$ whose ratio is $ q$. Find all the possible values of $ q$.

VMEO III 2006 Shortlist, N2

Let $a_1,a_2,...$ be an arithmetic sequence with the common difference between terms is positive. Assume there are $k$ terms of this sequence creates an geometric sequence with common ratio $d$. Prove that $n\ge 2^{k-1}$.

1973 IMO, 3

Let $a_1, \ldots, a_n$ be $n$ positive numbers and $0 < q < 1.$ Determine $n$ positive numbers $b_1, \ldots, b_n$ so that: [i]a.)[/i] $ a_{k} < b_{k}$ for all $k = 1, \ldots, n,$ [i]b.)[/i] $q < \frac{b_{k+1}}{b_{k}} < \frac{1}{q}$ for all $k = 1, \ldots, n-1,$ [i]c.)[/i] $\sum \limits^n_{k=1} b_k < \frac{1+q}{1-q} \cdot \sum \limits^n_{k=1} a_k.$

1981 AMC 12/AHSME, 26

Alice, Bob, and Carol repeatedly take turns tossing a die. Alice begins; Bob always follows Alice; Carol always follows Bob; and Alice always follows Carol. Find the probability that Carol will be the first one to toss a six. (The probability of obtaining a six on any toss is $ \frac{1}{6}$, independent of the outcome of any other toss.) $ \textbf{(A)}\ \frac{1}{3}\qquad \textbf{(B)}\ \frac{2}{9}\qquad \textbf{(C)}\ \frac{5}{18}\qquad \textbf{(D)}\ \frac{25}{91}\qquad \textbf{(E)}\ \frac{36}{91}$

2022 IMO Shortlist, A5

Find all positive integers $n \geqslant 2$ for which there exist $n$ real numbers $a_1<\cdots<a_n$ and a real number $r>0$ such that the $\tfrac{1}{2}n(n-1)$ differences $a_j-a_i$ for $1 \leqslant i<j \leqslant n$ are equal, in some order, to the numbers $r^1,r^2,\ldots,r^{\frac{1}{2}n(n-1)}$.

2005 USAMTS Problems, 2

[i]Centered hexagonal numbers[/i] are the numbers of dots used to create hexagonal arrays of dots. The first four centered hexagonal numbers are 1, 7, 19, and 37 as shown below: [asy] size(250);defaultpen(linewidth(0.4)); dot(origin^^shift(-12,0)*origin^^shift(-24,0)*origin^^shift(-36,0)*origin); int i; for(i=0; i<360; i=i+60) { dot(1*dir(i)^^2*dir(i)^^3*dir(i)); dot(shift(1/2, sqrt(3)/2)*1*dir(i)^^shift(1/2, sqrt(3)/2)*2*dir(i)); dot(shift(1, sqrt(3))*1*dir(i)); dot(shift(-12,0)*origin+1*dir(i)^^shift(-12,0)*origin+2*dir(i)); dot(shift(-12,0)*origin+sqrt(3)*dir(i+30)); dot(shift(-24,0)*origin+1*dir(i)); } label("$1$", (-36, -5), S); label("$7$", (-24, -5), S); label("$19$", (-12, -5), S); label("$37$", (0, -5), S); label("Centered Hexagonal Numbers", (-18,-10), S);[/asy] Consider an arithmetic sequence 1, $a$, $b$ and a geometric sequence 1,$c$,$d$, where $a$,$b$,$c$, and $d$ are all positive integers and $a+b=c+d$. Prove that each centered hexagonal number is a possible value of $a$, and prove that each possible value of $a$ is a centered hexagonal number.

1955 AMC 12/AHSME, 32

If the discriminant of $ ax^2\plus{}2bx\plus{}c\equal{}0$ is zero, then another true statement about $ a$, $ b$, and $ c$ is that: $ \textbf{(A)}\ \text{they form an arithmetic progression} \\ \textbf{(B)}\ \text{they form a geometric progression} \\ \textbf{(C)}\ \text{they are unequal} \\ \textbf{(D)}\ \text{they are all negative numbers} \\ \textbf{(E)}\ \text{only b is negative and a and c are positive}$

1976 Euclid, 2

Source: 1976 Euclid Part B Problem 2 ----- Given that $x$, $y$, and $2$ are in geometric progression, and that $x^{-1}$, $y^{-1}$, and $9x^{-2}$ are in are in arithmetic progression, then find the numerical value of $xy$.

2021 Kurschak Competition, 1

Let $P_0=(a_0,b_0),P_1=(a_1,b_1),P_2=(a_2,b_2)$ be points on the plane such that $P_0P_1P_2\Delta$ contains the origin $O$. Show that the areas of triangles $P_0OP_1,P_0OP_2,P_1OP_2$ form a geometric sequence in that order if and only if there exists a real number $x$, such that $$ a_0x^2+a_1x+a_2=b_0x^2+b_1x+b_2=0 $$