This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 122

2011 AIME Problems, 5

The sum of the first 2011 terms of a geometric series is 200. The sum of the first 4022 terms of the same series is 380. Find the sum of the first 6033 terms of the series.

2015 Putnam, B4

Let $T$ be the set of all triples $(a,b,c)$ of positive integers for which there exist triangles with side lengths $a,b,c.$ Express \[\sum_{(a,b,c)\in T}\frac{2^a}{3^b5^c}\] as a rational number in lowest terms.

1989 National High School Mathematics League, 10

A positive number, if its fractional part, integeral part, and itself are geometric series, then the number is________.

2013 Online Math Open Problems, 19

Let $\sigma(n)$ be the number of positive divisors of $n$, and let $\operatorname{rad} n$ be the product of the distinct prime divisors of $n$. By convention, $\operatorname{rad} 1 = 1$. Find the greatest integer not exceeding \[ 100\left(\sum_{n=1}^{\infty}\frac{\sigma(n)\sigma(n \operatorname{rad} n)}{n^2\sigma(\operatorname{rad} n)}\right)^{\frac{1}{3}}. \][i]Proposed by Michael Kural[/i]

1967 AMC 12/AHSME, 20

A circle is inscribed in a square of side $m$, then a square is inscribed in that circle, then a circle is inscribed in the latter square, and so on. If $S_n$ is the sum of the areas of the first $n$ circles so inscribed, then, as $n$ grows beyond all bounds, $S_n$ approaches: $\textbf{(A)}\ \frac{\pi m^2}{2}\qquad \textbf{(B)}\ \frac{3\pi m^2}{8}\qquad \textbf{(C)}\ \frac{\pi m^2}{3}\qquad \textbf{(D)}\ \frac{\pi m^2}{4}\qquad \textbf{(E)}\ \frac{\pi m^2}{8}$

1981 AMC 12/AHSME, 26

Alice, Bob, and Carol repeatedly take turns tossing a die. Alice begins; Bob always follows Alice; Carol always follows Bob; and Alice always follows Carol. Find the probability that Carol will be the first one to toss a six. (The probability of obtaining a six on any toss is $ \frac{1}{6}$, independent of the outcome of any other toss.) $ \textbf{(A)}\ \frac{1}{3}\qquad \textbf{(B)}\ \frac{2}{9}\qquad \textbf{(C)}\ \frac{5}{18}\qquad \textbf{(D)}\ \frac{25}{91}\qquad \textbf{(E)}\ \frac{36}{91}$

2011 AMC 12/AHSME, 22

Let $T_1$ be a triangle with sides $2011, 2012,$ and $2013$. For $n \ge 1$, if $T_n=\triangle ABC$ and $D,E,$ and $F$ are the points of tangency of the incircle of $\triangle ABC$ to the sides $AB,BC$ and $AC$, respectively, then $T_{n+1}$ is a triangle with side lengths $AD,BE,$ and $CF$, if it exists. What is the perimeter of the last triangle in the sequence $(T_n)$? $ \textbf{(A)}\ \frac{1509}{8} \qquad \textbf{(B)}\ \frac{1509}{32} \qquad \textbf{(C)}\ \frac{1509}{64} \qquad \textbf{(D)}\ \frac{1509}{128} \qquad \textbf{(E)}\ \frac{1509}{256} $

2007 ITest, 5

Compute the sum of all twenty-one terms of the geometric series \[1+2+4+8+\cdots+1048576.\] $\textbf{(A) }2097149\hspace{12em}\textbf{(B) }2097151\hspace{12em}\textbf{(C) }2097153$ $\textbf{(D) }2097157\hspace{12em}\textbf{(E) }2097161$

2010 Stanford Mathematics Tournament, 9

A straight line connects City A at $(0, 0)$ to City B, 300 meters away at $(300, 0)$. At time $t=0$, a bullet train instantaneously sets out from City A to City B while another bullet train simultaneously leaves from City B to City A going on the same train track. Both trains are traveling at a constant speed of $50$ meters/second. Also, at $t=0$, a super y stationed at $(150, 0)$ and restricted to move only on the train tracks travels towards City B. The y always travels at 60 meters/second, and any time it hits a train, it instantaneously reverses its direction and travels at the same speed. At the moment the trains collide, what is the total distance that the y will have traveled? Assume each train is a point and that the trains travel at their same respective velocities before and after collisions with the y

1981 AMC 12/AHSME, 14

In a geometric sequence of real numbers, the sum of the first two terms is 7, and the sum of the first 6 terms is 91. The sum of the first 4 terms is $\text{(A)}\ 28 \qquad \text{(B)}\ 32 \qquad \text{(C)}\ 35 \qquad \text{(D)}\ 49 \qquad \text{(E)}\ 84$

2015 AMC 12/AHSME, 9

Larry and Julius are playing a game, taking turns throwing a ball at a bottle sitting on a ledge. Larry throws first. The winner is the first person to knock the bottle off the ledge. At each turn the probability that a player knocks the bottle off the ledge is $\frac{1}{2}$, independently of what has happened before. What is the probability that Larry wins the game? $\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{3}{5}\qquad\textbf{(C) }\frac{2}{3}\qquad\textbf{(D) }\frac{3}{4}\qquad\textbf{(E) }\frac{4}{5}$

2012 Online Math Open Problems, 48

Suppose that \[\sum_{i=1}^{982} 7^{i^2}\] can be expressed in the form $983q + r$, where $q$ and $r$ are integers and $0 \leq r \leq 492$. Find $r$. [i]Author: Alex Zhu[/i]

2014 Bulgaria National Olympiad, 2

Find all functions $f: \mathbb{Q}^+ \to \mathbb{R}^+ $ with the property: \[f(xy)=f(x+y)(f(x)+f(y)) \,,\, \forall x,y \in \mathbb{Q}^+\] [i]Proposed by Nikolay Nikolov[/i]

1951 AMC 12/AHSME, 11

The limit of the sum of an infinite number of terms in a geometric progression is $ \frac {a}{1 \minus{} r}$ where $ a$ denotes the first term and $ \minus{} 1 < r < 1$ denotes the common ratio. The limit of the sum of their squares is: $ \textbf{(A)}\ \frac {a^2}{(1 \minus{} r)^2} \qquad\textbf{(B)}\ \frac {a^2}{1 \plus{} r^2} \qquad\textbf{(C)}\ \frac {a^2}{1 \minus{} r^2} \qquad\textbf{(D)}\ \frac {4a^2}{1 \plus{} r^2} \qquad\textbf{(E)}\ \text{none of these}$

2009 USAMTS Problems, 5

The cubic equation $x^3+2x-1=0$ has exactly one real root $r$. Note that $0.4<r<0.5$. (a) Find, with proof, an increasing sequence of positive integers $a_1 < a_2 < a_3 < \cdots$  such that \[\frac{1}{2}=r^{a_1}+r^{a_2}+r^{a_3}+\cdots.\] (b) Prove that the sequence that you found in part (a) is the unique increasing sequence with the above property.

2000 Putnam, 1

Let $A$ be a positive real number. What are the possible values of $\displaystyle\sum_{j=0}^{\infty} x_j^2, $ given that $x_0, x_1, \cdots$ are positive numbers for which $\displaystyle\sum_{j=0}^{\infty} x_j = A$?

1982 IMO Longlists, 53

Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$. [b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \] [b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]

2017 Harvard-MIT Mathematics Tournament, 2

Find the value of $$\sum_{1\le a<b<c} \frac{1}{2^a3^b5^c}$$ (i.e. the sum of $\frac{1}{2^a3^b5^c}$ over all triples of positive integers $(a, b, c)$ satisfying $a<b<c$)

1956 Putnam, A1

Evaluate $$ \lim_{x\to \infty} \left( \frac{a^x -1}{x(a-1)} \right)^{1\slash x},$$ where $a>0$ and $a\ne 1.$

2012 ELMO Shortlist, 8

Fix two positive integers $a,k\ge2$, and let $f\in\mathbb{Z}[x]$ be a nonconstant polynomial. Suppose that for all sufficiently large positive integers $n$, there exists a rational number $x$ satisfying $f(x)=f(a^n)^k$. Prove that there exists a polynomial $g\in\mathbb{Q}[x]$ such that $f(g(x))=f(x)^k$ for all real $x$. [i]Victor Wang.[/i]

2012 Romania Team Selection Test, 2

Let $n$ be a positive integer. Find the value of the following sum \[\sum_{(n)}\sum_{k=1}^n {e_k2^{e_1+\cdots+e_k-2k-n}},\] where $e_k\in\{0,1\}$ for $1\leq k \leq n$, and the sum $\sum_{(n)}$ is taken over all $2^n$ possible choices of $e_1,\ldots ,e_n$.

1959 AMC 12/AHSME, 39

Let $S$ be the sum of the first nine terms of the sequence \[x+a, x^2+2a, x^3+3a, \cdots.\] Then $S$ equals: $ \textbf{(A)}\ \frac{50a+x+x^8}{x+1} \qquad\textbf{(B)}\ 50a-\frac{x+x^{10}}{x-1}\qquad\textbf{(C)}\ \frac{x^9-1}{x+1}+45a\qquad$$\textbf{(D)}\ \frac{x^{10}-x}{x-1}+45a\qquad\textbf{(E)}\ \frac{x^{11}-x}{x-1}+45a$

2013 Stanford Mathematics Tournament, 6

Compute $\sum_{k=0}^{\infty}\int_{0}^{\frac{\pi}{3}}\sin^{2k} x \, dx$.

1983 Iran MO (2nd round), 7

Find the sum $\sum_{i=1}^{\infty} \frac{n}{2^n}.$

1992 USAMO, 1

Find, as a function of $\, n, \,$ the sum of the digits of \[ 9 \times 99 \times 9999 \times \cdots \times \left( 10^{2^n} - 1 \right), \] where each factor has twice as many digits as the previous one.