This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2024-IMOC, G6

Tags: geometry
$ABCD$ is a cyclic quadrilateral and $AC$ intersects $BD$ at $E$. $M, N$ are the midpoints of $AB, CD$, respectively. $\odot(AMN)$ meets $\odot(ABCD)$ again at $P$. $\odot(CMN)$ meets $\odot(ABCD)$ again at $Q$. $\odot(PEQ)$ meets $BD$ again at $T$. Prove that $M,N,T$ are colinear. [i]Proposed by chengbilly[/i]

2010 Postal Coaching, 3

In a quadrilateral $ABCD$, we have $\angle DAB = 110^{\circ} , \angle ABC = 50^{\circ}$ and $\angle BCD = 70^{\circ}$ . Let $ M, N$ be the mid-points of $AB$ and $CD$ respectively. Suppose $P$ is a point on the segment $M N$ such that $\frac{AM}{CN} = \frac{MP}{PN}$ and $AP = CP$ . Find $\angle AP C$.

2020 May Olympiad, 4

Tags: geometry
Let $ABC$ be a right triangle, right at $B$, and let $M$ be the midpoint of the side $BC$. Let $P$ be the point in bisector of the angle $ \angle BAC$ such that $PM$ is perpendicular to $BC (P$ is outside the triangle $ABC$). Determine the triangle area $ABC$ if $PM = 1$ and $MC = 5$.

2013 India Regional Mathematical Olympiad, 2

Tags: geometry
In a triangle $ABC$, $AD$ is the altitude from $A$, and $H$ is the orthocentre. Let $K$ be the centre of the circle passing through $D$ and tangent to $BH$ at $H$. Prove that the line $DK$ bisects $AC$.

2007 Denmark MO - Mohr Contest, 1

Tags: decagon , area , geometry
Triangle $ABC$ lies in a regular decagon as shown in the figure. What is the ratio of the area of the triangle to the area of the entire decagon? Write the answer as a fraction of integers. [img]https://1.bp.blogspot.com/-Ld_-4u-VQ5o/Xzb-KxPX0wI/AAAAAAAAMWg/-qPtaI_04CQ3vvVc1wDTj3SoonocpAzBQCLcBGAsYHQ/s0/2007%2BMohr%2Bp1.png[/img]

2015 Sharygin Geometry Olympiad, P6

Let $AA', BB'$ and $CC'$ be the altitudes of an acute-angled triangle $ABC$. Points $C_a, C_b$ are symmetric to $C' $ wrt $AA'$ and $BB'$. Points $A_b, A_c, B_c, B_a$ are defined similarly. Prove that lines $A_bB_a, B_cC_b$ and $C_aA_c$ are parallel.

2009 Canadian Mathematical Olympiad Qualification Repechage, 2

Triangle $ABC$ is right-angled at $C$ with $AC = b$ and $BC = a$. If $d$ is the length of the altitude from $C$ to $AB$, prove that $\dfrac{1}{a^2}+\dfrac{1}{b^2}=\dfrac{1}{d^2}$

2010 Hong kong National Olympiad, 1

Let $ABC$ be an arbitrary triangle. A regular $n$-gon is constructed outward on the three sides of $\triangle ABC$. Find all $n$ such that the triangle formed by the three centres of the $n$-gons is equilateral.

2002 Denmark MO - Mohr Contest, 2

Prove that for any integer $n$ greater than $5$, a square can be divided into $n$ squares.

1996 Portugal MO, 6

In a regular polygon with $134$ sides, $67$ diagonals are drawn so that exactly one diagonal emerges from each vertex. We call the [i]length[/i] of a diagonal the number of sides of the polygon included between the vertices of the diagonal and which is less than or equal to $67$. If we order the [i]lengths [/i] of the diagonals in ascending order, we obtain a succession of $67$ numbers $(d_1,d_2,...,d_{67})$. It will be possible to draw diagonals such that a) $(d_1,d_2,...,d_{67})=\underbrace{2 ... 2}_{6},\underbrace{3 ... 3}_{61}$ ? b) $(d_1,d_2,...,d_{67}) =\underbrace{3 ... 3}_{8},\underbrace{6 ... 6}_{55}.\underbrace{8 ... 8}_{4} $ ?

2016 PUMaC Geometry B, 1

Tags: geometry
A circle of radius 1 has four circles $\omega_1, \omega_2, \omega_3$, and $\omega_4$ of equal radius internally tangent to it, so that $\omega_1$ is tangent to $\omega_2$, which is tangent to $\omega_3$, which is tangent to $\omega_4$, which is tangent to $\omega_1$, as shown. The radius of the circle externally tangent to $\omega_1, \omega_2, \omega_3$, and $\omega_4$ has radius r. If $r = a -\sqrt{b}$ for positive integers $a$ and $b$, compute $a + b$. [img]https://cdn.artofproblemsolving.com/attachments/e/3/c23f66333c0b4c0bf31b704cec665e50816149.png[/img]

2023 Denmark MO - Mohr Contest, 3

In a field, $2023$ friends are standing in such a way that all distances between them are distinct. Each of them fires a water pistol at the friend that stands closest. Prove that at least one person does not get wet.

2014 Harvard-MIT Mathematics Tournament, 15

Tags: geometry
Given a regular pentagon of area $1$, a pivot line is a line not passing through any of the pentagon's vertices such that there are $3$ vertices of the pentagon on one side of the line and $2$ on the other. A pivot point is a point inside the pentagon with only finitely many non-pivot lines passing through it. Find the area of the region of pivot points.

2022 Iran Team Selection Test, 3

Tags: geometry
Incircle $\omega$ of triangle $ABC$ is tangent to sides $CB$ and $CA$ at $D$ and $E$, respectively. Point $X$ is the reflection of $D$ with respect to $B$. Suppose that the line $DE$ is tangent to the $A$-excircle at $Z$. Let the circumcircle of triangle $XZE$ intersect $\omega$ for the second time at $K$. Prove that the intersection of $BK$ and $AZ$ lies on $\omega$. Proposed by Mahdi Etesamifard and Alireza Dadgarnia

2019 India National OIympiad, 5

Tags: p5 , geometry
Let $AB$ be the diameter of a circle $\Gamma$ and let $C$ be a point on $\Gamma$ different from $A$ and $B$. Let $D$ be the foot of perpendicular from $C$ on to $AB$.Let $K$ be a point on the segment $CD$ such that $AC$ is equal to the semi perimeter of $ADK$.Show that the excircle of $ADK$ opposite $A$ is tangent to $\Gamma$.

2016 BmMT, Ind. Round

[b]p1.[/b] David is taking a $50$-question test, and he needs to answer at least $70\%$ of the questions correctly in order to pass the test. What is the minimum number of questions he must answer correctly in order to pass the test? [b]p2.[/b] You decide to flip a coin some number of times, and record each of the results. You stop flipping the coin once you have recorded either $20$ heads, or $16$ tails. What is the maximum number of times that you could have flipped the coin? [b]p3.[/b] The width of a rectangle is half of its length. Its area is $98$ square meters. What is the length of the rectangle, in meters? [b]p4.[/b] Carol is twice as old as her younger brother, and Carol's mother is $4$ times as old as Carol is. The total age of all three of them is $55$. How old is Carol's mother? [b]p5.[/b] What is the sum of all two-digit multiples of $9$? [b]p6.[/b] The number $2016$ is divisible by its last two digits, meaning that $2016$ is divisible by $16$. What is the smallest integer larger than $2016$ that is also divisible by its last two digits? [b]p7.[/b] Let $Q$ and $R$ both be squares whose perimeters add to $80$. The area of $Q$ to the area of $R$ is in a ratio of $16 : 1$. Find the side length of $Q$. [b]p8.[/b] How many $8$-digit positive integers have the property that the digits are strictly increasing from left to right? For instance, $12356789$ is an example of such a number, while $12337889$ is not. [b]p9.[/b] During a game, Steve Korry attempts $20$ free throws, making 16 of them. How many more free throws does he have to attempt to finish the game with $84\%$ accuracy, assuming he makes them all? [b]p10.[/b] How many di erent ways are there to arrange the letters $MILKTEA$ such that $TEA$ is a contiguous substring? For reference, the term "contiguous substring" means that the letters $TEA$ appear in that order, all next to one another. For example, $MITEALK$ would be such a string, while $TMIELKA$ would not be. [b]p11.[/b] Suppose you roll two fair $20$-sided dice. What is the probability that their sum is divisible by $10$? [b]p12.[/b] Suppose that two of the three sides of an acute triangle have lengths $20$ and $16$, respectively. How many possible integer values are there for the length of the third side? [b]p13.[/b] Suppose that between Beijing and Shanghai, an airplane travels $500$ miles per hour, while a train travels at $300$ miles per hour. You must leave for the airport $2$ hours before your flight, and must leave for the train station $30$ minutes before your train. Suppose that the two methods of transportation will take the same amount of time in total. What is the distance, in miles, between the two cities? [b]p14.[/b] How many nondegenerate triangles (triangles where the three vertices are not collinear) with integer side lengths have a perimeter of $16$? Two triangles are considered distinct if they are not congruent. [b]p15.[/b] John can drive $100$ miles per hour on a paved road and $30$ miles per hour on a gravel road. If it takes John $100$ minutes to drive a road that is $100$ miles long, what fraction of the time does John spend on the paved road? [b]p16.[/b] Alice rolls one pair of $6$-sided dice, and Bob rolls another pair of $6$-sided dice. What is the probability that at least one of Alice's dice shows the same number as at least one of Bob's dice? [b]p17.[/b] When $20^{16}$ is divided by $16^{20}$ and expressed in decimal form, what is the number of digits to the right of the decimal point? Trailing zeroes should not be included. [b]p18.[/b] Suppose you have a $20 \times 16$ bar of chocolate squares. You want to break the bar into smaller chunks, so that after some sequence of breaks, no piece has an area of more than $5$. What is the minimum possible number of times that you must break the bar? For an example of how breaking the chocolate works, suppose we have a $2\times 2$ bar and wish to break it entirely into $1\times 1$ bars. We can break it once to get two $2\times 1$ bars. Then, we would have to break each of these individual bars in half in order to get all the bars to be size $1\times 1$, and we end up using $3$ breaks in total. [b]p19.[/b] A class of $10$ students decides to form two distinguishable committees, each with $3$ students. In how many ways can they do this, if the two committees can have no more than one student in common? [b]p20.[/b] You have been told that you are allowed to draw a convex polygon in the Cartesian plane, with the requirements that each of the vertices has integer coordinates whose values range from $0$ to $10$ inclusive, and that no pair of vertices can share the same $x$ or $y$ coordinate value (so for example, you could not use both $(1, 2)$ and $(1, 4)$ in your polygon, but $(1, 2)$ and $(2, 1)$ is fine). What is the largest possible area that your polygon can have? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 Abels Math Contest (Norwegian MO) Final, 2

The points $P$ and $Q$ lie on the sides $BC$ and $CD$ of the parallelogram $ABCD$ so that $BP = QD$. Show that the intersection point between the lines $BQ$ and $DP$ lies on the line bisecting $\angle BAD$.

2024 Junior Balkan Team Selection Tests - Romania, P2

Tags: geometry
Let $ABC$ be a scalene triangle, with circumcircle $\omega$ and incentre $I.{}$ The tangent line at $C$ to $\omega$ intersects the line $AB$ at $D.{}$ The angle bisector of $BDC$ meets $BI$ at $P{}$ and $AI{}$ at $Q{}.$ Let $M{}$ be the midpoint of the segment $PQ.$ Prove that the line $IM$ passes through the middle of the arc $ACB$ of $\omega.$ [i]Dana Heuberger[/i]

1951 Moscow Mathematical Olympiad, 194

One side of a convex polygon is equal to $a$, the sum of exterior angles at the vertices not adjacent to this side are equal to $120^o$. Among such polygons, find the polygon of the largest area.

2016 Israel National Olympiad, 2

We are given a cone with height 6, whose base is a circle with radius $\sqrt{2}$. Inside the cone, there is an inscribed cube: Its bottom face on the base of the cone, and all of its top vertices lie on the cone. What is the length of the cube's edge? [img]https://i.imgur.com/AHqHHP6.png[/img]

1989 IMO Shortlist, 28

Consider in a plane $ P$ the points $ O,A_1,A_2,A_3,A_4$ such that \[ \sigma(OA_iA_j) \geq 1 \quad \forall i, j \equal{} 1, 2, 3, 4, i \neq j.\] where $ \sigma(OA_iA_j)$ is the area of triangle $ OA_iA_j.$ Prove that there exists at least one pair $ i_0, j_0 \in \{1, 2, 3, 4\}$ such that \[ \sigma(OA_iA_j) \geq \sqrt{2}.\]

2017 Princeton University Math Competition, A7

Let $ACDB$ be a cyclic quadrilateral with circumcenter $\omega$. Let $AC=5$, $CD=6$, and $DB=7$. Suppose that there exists a unique point $P$ on $\omega$ such that $\overline{PC}$ intersects $\overline{AB}$ at a point $P_1$ and $\overline{PD}$ intersects $\overline{AB}$ at a point $P_2$, such that $AP_1=3$ and $P_2B=4$. Let $Q$ be the unique point on $\omega$ such that $\overline{QC}$ intersects $\overline{AB}$ at a point $Q_1$, $\overline{QD}$ intersects $\overline{AB}$ at a point $Q_2$, $Q_1$ is closer to $B$ than $P_1$ is to $B$, and $P_2Q_2=2$. The length of $P_1Q_1$ can be written as $\frac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

2005 USA Team Selection Test, 2

Let $A_{1}A_{2}A_{3}$ be an acute triangle, and let $O$ and $H$ be its circumcenter and orthocenter, respectively. For $1\leq i \leq 3$, points $P_{i}$ and $Q_{i}$ lie on lines $OA_{i}$ and $A_{i+1}A_{i+2}$ (where $A_{i+3}=A_{i}$), respectively, such that $OP_{i}HQ_{i}$ is a parallelogram. Prove that \[\frac{OQ_{1}}{OP_{1}}+\frac{OQ_{2}}{OP_{2}}+\frac{OQ_{3}}{OP_{3}}\geq 3.\]

2000 AIME Problems, 11

The coordinates of the vertices of isosceles trapezoid $ABCD$ are all integers, with $A=(20,100)$ and $D=(21,107).$ The trapezoid has no horizontal or vertical sides, and $\overline{AB}$ and $\overline{CD}$ are the only parallel sides. The sum o f the absolute values of all possible slopes for $\overline{AB}$ is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2021 Oral Moscow Geometry Olympiad, 5

Let $ABC$ be a triangle, $I$ and $O$ be its incenter and circumcenter respectively. $A'$ is symmetric to $O$ with respect to line $AI$. Points $B'$ and $C'$ are defined similarly. Prove that the nine-point centers of triangles $ABC$ and $A'B'C'$ coincide.