This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1995 Kurschak Competition, 3

Tags: geometry
Points $A$, $B$, $C$, $D$ are such that no three of them are collinear. Let $E=AB\cap CD$ and $F=BC\cap DA$. Let $k_1$, $k_2$ and $k_3$ denote the circles with diameter $\overline{AC}$, $\overline{BD}$ and $\overline{EF}$, respectively. Prove that either $k_1,k_2,k_3$ pass through one point, or no two of them intersect.

2006 Irish Math Olympiad, 3

Prove that a square of side 2.1 units can be completely covered by seven squares of side 1 unit. Extra: Try to prove that 7 is the minimal amount.

2005 USAMTS Problems, 3

Points $A, B,$ and $C$ are on a circle such that $\triangle ABC$ is an acute triangle. $X, Y ,$ and $Z$ are on the circle such that $AX$ is perpendicular to $BC$ at $D$, $BY$ is perpendicular to $AC$ at $E$, and $CZ$ is perpendicular to $AB$ at $F$. Find the value of \[ \frac{AX}{AD}+\frac{BY}{BE}+\frac{CZ}{CF}, \] and prove that this value is the same for all possible $A, B, C$ on the circle such that $\triangle ABC$ is acute. [asy] pathpen = linewidth(0.7); pair B = (0,0), C = (10,0), A = (2.5,8); path cir = circumcircle(A,B,C); pair D = foot(A,B,C), E = foot(B,A,C), F = foot(C,A,B), X = IP(D--2*D-A,cir), Y = IP(E--2*E-B,cir), Z = IP(F--2*F-C,cir); D(MP("A",A,N)--MP("B",B,SW)--MP("C",C,SE)--cycle); D(cir); D(A--MP("X",X)); D(B--MP("Y",Y,NE)); D(C--MP("Z",Z,NW)); D(rightanglemark(B,F,C,12)); D(rightanglemark(A,D,B,12)); D(rightanglemark(B,E,C,12));[/asy]

DMM Devil Rounds, 2005

[b]p1.[/b] Let $a$ and $b$ be complex numbers such that $a^3 + b^3 = -17$ and $a + b = 1$. What is the value of $ab$? [b]p2.[/b] Let $AEFB$ be a right trapezoid, with $\angle AEF = \angle EAB = 90^o$. The two diagonals $EB$ and $AF$ intersect at point $D$, and $C$ is a point on $AE$ such that $AE \perp DC$. If $AB = 8$ and $EF = 17$, what is the lenght of $CD$? [b]p3.[/b] How many three-digit numbers $abc$ (where each of $a$, $b$, and $c$ represents a single digit, $a \ne 0$) are there such that the six-digit number $abcabc$ is divisible by $2$, $3$, $5$, $7$, $11$, or $13$? [b]p4.[/b] Let $S$ be the sum of all numbers of the form $\frac{1}{n}$ where $n$ is a postive integer and $\frac{1}{n}$ terminales in base $b$, a positive integer. If $S$ is $\frac{15}{8}$, what is the smallest such $b$? [b]p5.[/b] Sysyphus is having an birthday party and he has a square cake that is to be cut into $25$ square pieces. Zeus gets to make the first straight cut and messes up badly. What is the largest number of pieces Zeus can ruin (cut across)? Diagram? [b]p6.[/b] Given $(9x^2 - y^2)(9x^2 + 6xy + y^2) = 16$ and $3x + y = 2$. Find $x^y$. [b]p7.[/b] What is the prime factorization of the smallest integer $N$ such that $\frac{N}{2}$ is a perfect square, $\frac{N}{3}$ is a perfect cube, $\frac{N}{5}$ is a perfect fifth power? [b]p8.[/b] What is the maximum number of pieces that an spherical watermelon can be divided into with four straight planar cuts? [b]p9.[/b] How many ordered triples of integers $(x,y,z)$ are there such that $0 \le x, y, z \le 100$ and $$(x - y)^2 + (y - z)^2 + (z - x)^2 \ge (x + y - 2z) + (y + z - 2x)^2 + (z + x - 2y)^2.$$ [b]p10.[/b] Find all real solutions to $(2x - 4)^2 + (4x - 2)^3 = (4x + 2x - 6)^3$. [b]p11.[/b] Let $f$ be a function that takes integers to integers that also has $$f(x)=\begin{cases} x - 5\,\, if \,\, x \ge 50 \\ f (f (x + 12)) \,\, if \,\, x < 50 \end{cases}$$ Evaluate $f (2) + f (39) + f (58).$ [b]p12.[/b] If two real numbers are chosen at random (i.e. uniform distribution) from the interval $[0,1]$, what is the probability that theit difference will be less than $\frac35$? [b]p13.[/b] Let $a$, $b$, and $c$ be positive integers, not all even, such that $a < b$, $b = c - 2$, and $a^2 + b^2 = c^2$. What is the smallest possible value for $c$? [b]p14.[/b] Let $ABCD$ be a quadrilateral whose diagonals intersect at $O$. If $BO = 8$, $OD = 8$, $AO = 16$, $OC = 4$, and $AB = 16$, then find $AD$. [b]p15.[/b] Let $P_0$ be a regular icosahedron with an edge length of $17$ units. For each nonnegative integer $n$, recursively construct $P_{n+1}$ from Pn by performing the following procedure on each face of $P_n$: glue a regular tetrahedron to that face such that three of the vertices of the tetrahedron are the midpoints of the three adjacent edges of the face, and the last vertex extends outside of $P_n$. Express the number of square units in the surface area of $P_{17}$ in the form $$\frac{u^v\cdot w \sqrt{x}}{y^z}$$ , where $u, v, w, x, y$, and $z$ are integers, all greater than or equal to $2$, that satisfy the following conditions: the only perfect square that evenly divides $x$ is $1$, the GCD of $u$ and y is $1$, and neither $u$ nor $y$ divides $w$. Answers written in any other form will not be considered correct! PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 NIMO Problems, 7

Tags: geometry
Let $A$ and $B$ be points with $AB=12$. A point $P$ in the plane of $A$ and $B$ is $\textit{special}$ if there exist points $X, Y$ such that [list] [*]$P$ lies on segment $XY$, [*]$PX : PY = 4 : 7$, and [*]the circumcircles of $AXY$ and $BXY$ are both tangent to line $AB$. [/list] A point $P$ that is not special is called $\textit{boring}$. Compute the smallest integer $n$ such that any two boring points have distance less than $\sqrt{n/10}$ from each other. [i]Proposed by Michael Ren[/i]

IV Soros Olympiad 1997 - 98 (Russia), 10.10

A circle touches the extensions of sides $CA$ and $CB$ of triangle $ABC$, and also touches side $AB$ of this triangle at point $P$. Prove that the radius of the circle tangent to segments $AP$, $CP$ and the circumscribed circle of this triangle is equal to the radius of the inscribed circle in this triangle.

2023 Thailand TST, 2

Tags: geometry
Let $ABC$ be a triangle and $\ell_1,\ell_2$ be two parallel lines. Let $\ell_i$ intersects line $BC,CA,AB$ at $X_i,Y_i,Z_i$, respectively. Let $\Delta_i$ be the triangle formed by the line passed through $X_i$ and perpendicular to $BC$, the line passed through $Y_i$ and perpendicular to $CA$, and the line passed through $Z_i$ and perpendicular to $AB$. Prove that the circumcircles of $\Delta_1$ and $\Delta_2$ are tangent.

2017 Iran MO (3rd round), 3

In triangle $ABC$ points $P$ and $Q$ lies on the external bisector of $\angle A$ such that $B$ and $P$ lies on the same side of $AC$. Perpendicular from $P$ to $AB$ and $Q$ to $AC$ intersect at $X$. Points $P'$ and $Q'$ lies on $PB$ and $QC$ such that $PX=P'X$ and $QX=Q'X$. Point $T$ is the midpoint of arc $BC$ (does not contain $A$) of the circumcircle of $ABC$. Prove that $P',Q'$ and $T$ are collinear if and only if $\angle PBA+\angle QCA=90^{\circ}$.

2019 IMO Shortlist, G3

Tags: geometry
In triangle $ABC$, point $A_1$ lies on side $BC$ and point $B_1$ lies on side $AC$. Let $P$ and $Q$ be points on segments $AA_1$ and $BB_1$, respectively, such that $PQ$ is parallel to $AB$. Let $P_1$ be a point on line $PB_1$, such that $B_1$ lies strictly between $P$ and $P_1$, and $\angle PP_1C=\angle BAC$. Similarly, let $Q_1$ be the point on line $QA_1$, such that $A_1$ lies strictly between $Q$ and $Q_1$, and $\angle CQ_1Q=\angle CBA$. Prove that points $P,Q,P_1$, and $Q_1$ are concyclic. [i]Proposed by Anton Trygub, Ukraine[/i]

2017 Saudi Arabia BMO TST, 2

Let $ABC$ be an acute triangle with $AT, AS$ respectively are the internal, external angle bisector of $ABC$ and $T, S \in BC$. On the circle with diameter $TS$, take an arbitrary point $P$ that lies inside the triangle ABC. Denote $D, E, F, I$ as the incenter of triangle $PBC, PCA, PAB, ABC$. Prove that four lines $AD, BE, CF$ and $IP$ are concurrent.

2013 Sharygin Geometry Olympiad, 3

Let $ABC$ be a right-angled triangle ($\angle B = 90^\circ$). The excircle inscribed into the angle $A$ touches the extensions of the sides $AB$, $AC$ at points $A_1, A_2$ respectively; points $C_1, C_2$ are defined similarly. Prove that the perpendiculars from $A, B, C$ to $C_1C_2, A_1C_1, A_1A_2$ respectively, concur.

Novosibirsk Oral Geo Oly VIII, 2021.5

On the legs $AC$ and $BC$ of an isosceles right-angled triangle with a right angle $C$, points $D$ and $E$ are taken, respectively, so that $CD = CE$. Perpendiculars on line $AE$ from points $C$ and $D$ intersect segment $AB$ at points $P$ and $Q$, respectively. Prove that $BP = PQ$.

1990 IMO Longlists, 30

Chords $ AB$ and $ CD$ of a circle intersect at a point $ E$ inside the circle. Let $ M$ be an interior point of the segment $ EB$. The tangent line at $ E$ to the circle through $ D$, $ E$, and $ M$ intersects the lines $ BC$ and $ AC$ at $ F$ and $ G$, respectively. If \[ \frac {AM}{AB} \equal{} t, \] find $\frac {EG}{EF}$ in terms of $ t$.

1997 IMO, 2

It is known that $ \angle BAC$ is the smallest angle in the triangle $ ABC$. The points $ B$ and $ C$ divide the circumcircle of the triangle into two arcs. Let $ U$ be an interior point of the arc between $ B$ and $ C$ which does not contain $ A$. The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AU$ at $ V$ and $ W$, respectively. The lines $ BV$ and $ CW$ meet at $ T$. Show that $ AU \equal{} TB \plus{} TC$. [i]Alternative formulation:[/i] Four different points $ A,B,C,D$ are chosen on a circle $ \Gamma$ such that the triangle $ BCD$ is not right-angled. Prove that: (a) The perpendicular bisectors of $ AB$ and $ AC$ meet the line $ AD$ at certain points $ W$ and $ V,$ respectively, and that the lines $ CV$ and $ BW$ meet at a certain point $ T.$ (b) The length of one of the line segments $ AD, BT,$ and $ CT$ is the sum of the lengths of the other two.

2010 Princeton University Math Competition, 2

In a rectangular plot of land, a man walks in a very peculiar fashion. Labeling the corners $ABCD$, he starts at $A$ and walks to $C$. Then, he walks to the midpoint of side $AD$, say $A_1$. Then, he walks to the midpoint of side $CD$ say $C_1$, and then the midpoint of $A_1D$ which is $A_2$. He continues in this fashion, indefinitely. The total length of his path if $AB=5$ and $BC=12$ is of the form $a + b\sqrt{c}$. Find $\displaystyle\frac{abc}{4}$.

2004 South East Mathematical Olympiad, 6

ABC is an isosceles triangle with AB=AC. Point D lies on side BC. Point F is inside $\triangle$ABC and lies on the circumcircle of triangle ADC. The circumcircle of triangle BDF intersects side AB at point E. Prove that $CD\cdot EF+DF\cdot AE=BD\cdot AF$.

2009 Indonesia TST, 1

Let $ ABC$ be a triangle. A circle $ P$ is internally tangent to the circumcircle of triangle $ ABC$ at $ A$ and tangent to $ BC$ at $ D$. Let $ AD$ meets the circumcircle of $ ABC$ agin at $ Q$. Let $ O$ be the circumcenter of triangle $ ABC$. If the line $ AO$ bisects $ \angle DAC$, prove that the circle centered at $ Q$ passing through $ B$, circle $ P$, and the perpendicular line of $ AD$ from $ B$, are all concurrent.

2023 BMT, 13

Tags: algebra , geometry
Consider the set of triangles with side lengths $1 \le x \le y \le z$ such that $x$, $y$, and $z$ are the solutions to the equation $t^3-at^2+bt = 12$ for some real numbers $a$ and $b$. Compute the smallest real number $N$ such that $N > ab$ for any choice of $x$, $y$, and $z$.

2002 Rioplatense Mathematical Olympiad, Level 3, 5

$ABC$ is any triangle. Tangent at $C$ to circumcircle ($O$) of $ABC$ meets $AB$ at $M$. Line perpendicular to $OM$ at $M$ intersects $BC$ at $P$ and $AC$ at $Q$. P.T. $MP=MQ$.

2025 Japan MO Finals, 2

Let $ABC$ be an acute-angled triangle with circumcenter $O$. Let $O_1$ and $O_2$ be the circumcenters of triangles $ABO$ and $ACO$, respectively. The circumcircle of $\triangle AO_1O_2$ intersects segment $BC$ at two distinct points $P$ and $Q$, with the four points $B, P, Q, C$ appearing in this order along $BC$. Let $O_3$ be the circumcenter of $\triangle OPQ$. Prove that points $A, O, O_3$ are collinear.

1998 All-Russian Olympiad Regional Round, 9.8

The endpoints of a compass are at two lattice points of an infinite unit square grid. It is allowed to rotate the compass around one of its endpoints, not varying its radius, and thus move the other endpoint to another lattice point. Can the endpoints of the compass change places after several such steps?

2017 AIME Problems, 15

Tags: geometry
The area of the smallest equilateral triangle with one vertex on each of the sides of the right triangle with side lengths $2\sqrt3$, $5$, and $\sqrt{37}$, as shown, is $\tfrac{m\sqrt{p}}{n}$, where $m$, $n$, and $p$ are positive integers, $m$ and $n$ are relatively prime, and $p$ is not divisible by the square of any prime. Find $m+n+p$. [asy] size(5cm); pair C=(0,0),B=(0,2*sqrt(3)),A=(5,0); real t = .385, s = 3.5*t-1; pair R = A*t+B*(1-t), P=B*s; pair Q = dir(-60) * (R-P) + P; fill(P--Q--R--cycle,gray); draw(A--B--C--A^^P--Q--R--P); dot(A--B--C--P--Q--R); [/asy]

2020 Macedonian Nationаl Olympiad, 3

Let $ABC$ be a triangle, and $A_1, B_1, C_1$ be points on the sides $BC, CA, AB$, respectively, such that $AA_1, BB_1, CC_1$ are the internal angle bisectors of $\triangle ABC$. The circumcircle $k' = (A_1B_1C_1)$ touches the side $BC$ at $A_1$. Let $B_2$ and $C_2$, respectively, be the second intersection points of $k'$ with lines $AC$ and $AB$. Prove that $|AB| = |AC|$ or $|AC_1| = |AB_2|$.

2024 APMO, 5

Tags: geometry
Line $\ell$ intersects sides $BC$ and $AD$ of cyclic quadrilateral $ABCD$ in its interior points $R$ and $S$, respectively, and intersects ray $DC$ beyond point $C$ at $Q$, and ray $BA$ beyond point $A$ at $P$. Circumcircles of the triangles $QCR$ and $QDS$ intersect at $N \neq Q$, while circumcircles of the triangles $PAS$ and $PBR$ intersect at $M\neq P$. Let lines $MP$ and $NQ$ meet at point $X$, lines $AB$ and $CD$ meet at point $K$ and lines $BC$ and $AD$ meet at point $L$. Prove that point $X$ lies on line $KL$.

2021 Bundeswettbewerb Mathematik, 4

In the Cartesian plane, a line segment is called [i]tame[/i] if it lies parallel to one of the coordinate axes and its distance to this axis is an integer. Otherwise it is called [i]wild[/i]. Let $m$ and $n$ be odd positive integers. The rectangle with vertices $(0,0),(m,0),(m,n)$ and $(0,n)$ is partitioned into finitely many triangles. Let $M$ be the set of these triangles. Assume that (1) Each triangle from $M$ has at least one tame side. (2) For each tame side of a triangle from $M$, the corresponding altitude has length $1$. (3) Each wild side of a triangle from $M$ is a common side of exactly two triangles from $M$. Show that at least two triangles from $M$ have two tame sides each.