Found problems: 25757
2009 German National Olympiad, 5
Let a triangle $ ABC$. $ E,F$ in segment $ AB$ so that $ E$ lie between $ AF$ and half of circle with diameter $ EF$ is tangent with $ BC,CA$ at $ G,H$. $ HF$ cut $ GE$ at $ S$, $ HE$ cut $ FG$ at $ T$. Prove that $ C$ is midpoint of $ ST$.
2006 Turkey MO (2nd round), 1
Points $P$ and $Q$ on side $AB$ of a convex quadrilateral $ABCD$ are given such that $AP = BQ.$ The circumcircles of triangles $APD$ and $BQD$ meet again at $K$ and those of $APC$ and $BQC$ meet again at $L$. Show that the points $D,C,K,L$ lie on a circle.
2006 JBMO ShortLists, 15
Let $A_1$ and $B_1$ be internal points lying on the sides $BC$ and $AC$ of the triangle $ABC$ respectively and segments $AA_1$ and $BB_1$ meet at $O$. The areas of the triangles $AOB_1,AOB$ and $BOA_1$ are distinct prime numbers and the area of the quadrilateral $A_1OB_1C$ is an integer. Find the least possible value of the area of the triangle $ABC$, and argue the existence of such a triangle.
2019 ELMO Shortlist, G2
Carl is given three distinct non-parallel lines $\ell_1, \ell_2, \ell_3$ and a circle $\omega$ in the plane. In addition to a normal straightedge, Carl has a special straightedge which, given a line $\ell$ and a point $P$, constructs a new line passing through $P$ parallel to $\ell$. (Carl does not have a compass.) Show that Carl can construct a triangle with circumcircle $\omega$ whose sides are parallel to $\ell_1,\ell_2,\ell_3$ in some order.
[i]Proposed by Vincent Huang[/i]
2003 Flanders Math Olympiad, 2
Two circles $C_1$ and $C_2$ intersect at $S$.
The tangent in $S$ to $C_1$ intersects $C_2$ in $A$ different from $S$.
The tangent in $S$ to $C_2$ intersects $C_1$ in $B$ different from $S$.
Another circle $C_3$ goes through $A, B, S$.
The tangent in $S$ to $C_3$ intersects $C_1$ in $P$ different from $S$ and $C_2$ in $Q$ different from $S$.
Prove that the distance $PS$ is equal to the distance $QS$.
2003 IMO Shortlist, 5
Every point with integer coordinates in the plane is the center of a disk with radius $1/1000$.
(1) Prove that there exists an equilateral triangle whose vertices lie in different discs.
(2) Prove that every equilateral triangle with vertices in different discs has side-length greater than $96$.
[i]Radu Gologan, Romania[/i]
[hide="Remark"]
The "> 96" in [b](b)[/b] can be strengthened to "> 124". By the way, part [b](a)[/b] of this problem is the place where I used [url=http://mathlinks.ro/viewtopic.php?t=5537]the well-known "Dedekind" theorem[/url].
[/hide]
2010 Germany Team Selection Test, 2
Let $ABC$ be a triangle with incenter $I$ and let $X$, $Y$ and $Z$ be the incenters of the triangles $BIC$, $CIA$ and $AIB$, respectively. Let the triangle $XYZ$ be equilateral. Prove that $ABC$ is equilateral too.
[i]Proposed by Mirsaleh Bahavarnia, Iran[/i]
2012 Romania National Olympiad, 2
[color=darkred]Let $a$ , $b$ and $c$ be three complex numbers such that $a+b+c=0$ and $|a|=|b|=|c|=1$ . Prove that:
\[3\le |z-a|+|z-b|+|z-c|\le 4,\]
for any $z\in\mathbb{C}$ , $|z|\le 1\, .$[/color]
2011 Harvard-MIT Mathematics Tournament, 6
Let $ABCD$ be a cyclic quadrilateral, and suppose that $BC = CD = 2$. Let $I$ be the incenter of triangle $ABD$. If $AI = 2$ as well, find the minimum value of the length of diagonal $BD$.
2023 BmMT, Ind. Round
[b]p1.[/b] If $x$ is $20\%$ of $23$ and $y$ is $23\%$ of $20$, compute $xy$ .
[b]p2.[/b] Pablo wants to eat a banana, a mango, and a tangerine, one at a time. How many ways can he choose the order to eat the three fruits?
[b]p3.[/b] Let $a$, $b$, and $c$ be $3$ positive integers. If $a + \frac{b}{c} = \frac{11}{6}$ , what is the minimum value of $a + b + c$?
[b]p4.[/b] A rectangle has an area of $12$. If all of its sidelengths are increased by $2$, its area becomes $32$. What is the perimeter of the original rectangle?
[b]p5.[/b] Rohit is trying to build a $3$-dimensional model by using several cubes of the same size. The model’s front view and top view are shown below. Suppose that every cube on the upper layer is directly above a cube on the lower layer and the rotations are considered distinct. Compute the total number of different ways to form this model.
[img]https://cdn.artofproblemsolving.com/attachments/b/b/40615b956f3d18313717259b12fcd6efb74cf8.png[/img]
[b]p6.[/b] Priscilla has three octagonal prisms and two cubes, none of which are touching each other. If she chooses a face from these five objects in an independent and uniformly random manner, what is the probability the chosen face belongs to a cube? (One octagonal prism and cube are shown below.)
[img]https://cdn.artofproblemsolving.com/attachments/0/0/b4f56a381c400cae715e70acde2cdb315ee0e0.png[/img]
[b]p7.[/b] Let triangle $\vartriangle ABC$ and triangle $\vartriangle DEF$ be two congruent isosceles right triangles where line segments $\overline{AC}$ and $\overline{DF}$ are their respective hypotenuses. Connecting a line segment $\overline{CF}$ gives us a square $ACFD$ but with missing line segments $\overline{AC}$, $\overline{AD}$, and $\overline{DF}$. Instead, $A$ and $D$ are connected by an arc defined by the semicircle with endpoints $A$ and $D$. If $CF = 1$, what is the perimeter of the whole shape $ABCFED$ ?
[img]https://cdn.artofproblemsolving.com/attachments/2/5/098d4f58fee1b3041df23ba16557ed93ee9f5b.png[/img]
[b]p8.[/b] There are two moles that live underground, and there are five circular holes that the moles can hop out of. The five holes are positioned as shown in the diagram below, where $A$, $B$, $C$, $D$, and $E$ are the centers of the circles, $AE = 30$ cm, and congruent triangles $\vartriangle ABC$, $\vartriangle CBD$, and $\vartriangle CDE$ are equilateral. The two moles randomly choose exactly two of the five holes, hop out of the two chosen holes, and hop back in. What is the probability that the holes that the two moles hop out of have centers that are exactly $15$ cm apart?
[img]https://cdn.artofproblemsolving.com/attachments/c/e/b46ba87b954a1904043020d7a211477caf321d.png[/img]
[b]p9.[/b] Carson is planning a trip for $n$ people. Let $x$ be the number of cars that will be used and $y$ be the number of people per car. What is the smallest value of $n$ such that there are exactly $3$ possibilities for $x$ and $y$ so that $y$ is an integer, $x < y$, and exactly one person is left without a car?
[b]p10.[/b] Iris is eating an ice cream cone, which consists of a hemisphere of ice cream with radius $r > 0$ on top of a cone with height $12$ and also radius $r$. Iris is a slow eater, so after eating one-third of the ice cream, she notices that the rest of the ice cream has melted and completely filled the cone. Assuming the ice cream did not change volume after it melted, what is the value of $r$?
[b]p11.[/b] As Natasha begins eating brunch between $11:30$ AM and $12$ PM, she notes that the smaller angle between the minute and hour hand of the clock is $27$ degrees. What is the number of degrees in the smaller angle between the minute and hour hand when Natasha finishes eating brunch $20$ minutes later?
[b]p12.[/b] On a regular hexagon $ABCDEF$, Luke the frog starts at point $A$, there is food on points $C$ and $E$ and there are crocodiles on points $B$ and $D$. When Luke is on a point, he hops to any of the five other vertices with equal probability. What is the probability that Luke will visit both of the points with food before visiting any of the crocodiles?
[b]p13.[/b] $2023$ regular unit hexagons are arranged in a tessellating lattice, as follows. The first hexagon $ABCDEF$ (with vertices in clockwise order) has leftmost vertex $A$ at the origin, and hexagons $H_2$ and $H_3$ share edges $\overline{CD}$ and $\overline{DE}$ with hexagon $H_1$, respectively. Hexagon $H_4$ shares edges with both hexagons $H_2$ and $H_3$, and hexagons $H_5$ and $H_6$ are constructed similarly to hexagons H_2 and $H_3$. Hexagons $H_7$ to $H_{2022}$ are constructed following the pattern of hexagons $H_4$, $H_5$, $H_6$. Finally, hexagon H_{2023} is constructed, sharing an edge with both hexagons H2021 and H2022. Compute the perimeter of the resulting figure.
[img]https://cdn.artofproblemsolving.com/attachments/1/d/eaf0d04676bac3e3c197b4686dcddd08fce9ac.png[/img]
[b]p14.[/b] Aditya’s favorite number is a positive two-digit integer. Aditya sums the integers from $5$ to his favorite number, inclusive. Then, he sums the next $12$ consecutive integers starting after his favorite number. If the two sums are consecutive integers and the second sum is greater than the first sum, what is Aditya’s favorite number?
[b]p15.[/b] The $100^{th}$ anniversary of BMT will fall in the year $2112$, which is a palindromic year. Compute the sum of all years from $0000$ to $9999$, inclusive, that are palindromic when written out as four-digit numbers (including leading zeros). Examples include $2002$, $1991$, and $0110$.
[b]p16.[/b] Points $A$, $B$, $C$, $D$, and $E$ lie on line $r$, in that order, such that $DE = 2DC$ and $AB = 2BC$. Let $M$ be the midpoint of segment $\overline{AC}$. Finally, let point $P$ lie on $r$ such that $PE = x$. If $AB = 8x$, $ME = 9x$, and $AP = 112$, compute the sum of the two possible values of $CD$.
[b]p17.[/b] A parabola $y = x^2$ in the xy-plane is rotated $180^o$ about a point $(a, b)$. The resulting parabola has roots at $x = 40$ and $x = 48$. Compute $a + b$.
[b]p18.[/b] Susan has a standard die with values $1$ to $6$. She plays a game where every time she rolls the die, she permanently increases the value on the top face by $1$. What is the probability that, after she rolls her die 3 times, there is a face on it with a value of at least $7$?
[b]p19.[/b] Let $N$ be a $6$-digit number satisfying the property that the average value of the digits of $N^4$ is $5$. Compute the sum of the digits of $N^4$.
[b]p20.[/b] Let $O_1$, $O_2$, $...$, $O_8$ be circles of radius $1$ such that $O_1$ is externally tangent to $O_8$ and $O_2$ but no other circles, $O_2$ is externally tangent to $O_1$ and $O_3$ but no other circles, and so on. Let $C$ be a circle that is externally tangent to each of $O_1$, $O_2$, $...$, $O_8$. Compute the radius of $C$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 Indonesia TST, 2
Let $n$ be a integer and $n \ge 3$, and $T_1T_2...T_n$ is a regular n-gon. Distinct $3$ points $T_i , T_j , T_k$ are chosen randomly. Determine the probability of triangle $T_iT_jT_k$ being an acute triangle.
2008 Singapore Team Selection Test, 1
Let $(O)$ be a circle, and let $ABP$ be a line segment such that $A,B$ lie on $(O)$ and $P$ is a point outside $(O)$. Let $C$ be a point on $(O)$ such that $PC$ is tangent to $(O)$ and let $D$ be the point on $(O)$ such that $CD$ is a diameter of $(O)$ and intersects $AB$ inside $(O)$. Suppose that the lines $DB$ and $OP$ intersect at $E$. Prove that $AC$ is perpendicular to $CE$.
2011 Purple Comet Problems, 10
The diagram shows a large circular dart board with four smaller shaded circles each internally tangent to the larger circle. Two of the internal circles have half the radius of the large circle, and are, therefore, tangent to each other. The other two smaller circles are tangent to these circles. If a dart is thrown so that it sticks to a point randomly chosen on the dart board, then the probability that the dart sticks to a point in the shaded area is $\dfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[asy]
size(150);
defaultpen(linewidth(0.8));
filldraw(circle((0,0.5),.5),gray);
filldraw(circle((0,-0.5),.5),gray);
filldraw(circle((2/3,0),1/3),gray);
filldraw(circle((-2/3,0),1/3),gray);
draw(unitcircle);
[/asy]
2002 JBMO ShortLists, 8
Let $ ABC$ be a triangle with centroid $ G$ and $ A_1,B_1,C_1$ midpoints of the sides $ BC,CA,AB$. A paralel through $ A_1$ to $ BB_1$ intersects $ B_1C_1$ at $ F$. Prove that triangles $ ABC$ and $ FA_1A$ are similar if and only if quadrilateral $ AB_1GC_1$ is cyclic.
2020 HMIC, 5
A triangle and a circle are in the same plane. Show that the area of the intersection of the triangle and the circle is at most one third of the area of the triangle plus one half of the area of the circle.
[i]Krit Boonsiriseth[/i]
1977 IMO Longlists, 30
A triangle $ABC$ with $\angle A = 30^\circ$ and $\angle C = 54^\circ$ is given. On $BC$ a point $D$ is chosen such that $ \angle CAD = 12^\circ.$ On $AB$ a point $E$ is chosen such that $\angle ACE = 6^\circ.$ Let $S$ be the point of intersection of $AD$ and $CE.$ Prove that $BS = BC.$
2003 CHKMO, 1
Two circles meet at points $A$ and $B$. A line through $B$ intersects the first circle again at $K$ and the second circle at $M$. A line parallel to $AM$ is tangent to the first circle at $Q$. The line $AQ$ intersects the second circle again at $R$.
$(a)$ Prove that the tangent to the second circle at $R$ is parallel to $AK$.
$(b)$ Prove that these two tangents meet on $KM$.
Estonia Open Senior - geometry, 1997.2.3
The figure shows a square and three circles of equal radius tangent to each other and square passes. Find the radius of the circles if the square length is $1$.
[img]http://3.bp.blogspot.com/-iIjwupkz7DQ/XnrIRhKIJnI/AAAAAAAALhA/clERrIDqEtcujzvZk_qu975wsTjKaxCLQCK4BGAYYCw/s400/97%2Bestonia%2Bopen%2Bs2.3.png[/img]
1998 Tournament Of Towns, 1
A $ 20\times20\times20$ block is cut up into 8000 non-overlapping unit cubes and a number is assigned to each. It is known that in each column of 20 cubes parallel to any edge of the block, the sum of their numbers is equal to 1. The number assigned to one of the unit cubes is 10. Three $ 1\times20\times20$ slices parallel to the faces of the block contain this unit cube. Find the sume of all numbers of the cubes outside these slices.
2019 China Northern MO, 5
Two circles $O_1$ and $O_2$ intersect at $A,B$. Bisector of outer angle $\angle O_1AO_2$ intersects $O_1$ at $C$, $O_2$ at $D$. $P$ is a point on $\odot(BCD)$, $CP\cap O_1=E,DP\cap O_2=F$. Prove that $PE=PF$.
1978 Romania Team Selection Test, 4
Diagonals $ AC $ and $ BD $ of a convex quadrilateral $ ABCD $ intersect a point $ O. $ Prove that if triangles $ OAB,OBC,OCD $ and $ ODA $ have the same perimeter, then $ ABCD $ is a rhombus. What happens if $ O $ is some other point inside the quadrilateral?
2015 Kazakhstan National Olympiad, 6
The quadrilateral $ABCD$ has an incircle of diameter $d$ which touches $BC$ at $K$ and touches $DA$ at $L$. Is it always true that the harmonic mean of $AB$ and $CD$ is equal to $KL$ if and only if the geometric mean of $AB$ and $CD$ is equal to $d$?
2006 Bundeswettbewerb Mathematik, 3
A point $P$ is given inside an acute-angled triangle $ABC$. Let $A',B',C'$ be the orthogonal projections of $P$ on sides $BC, CA, AB$ respectively. Determine the locus of points $P$ for which $\angle BAC = \angle B'A'C'$ and $\angle CBA = \angle C'B'A'$
2019 CMIMC, 2
How many ways are there to color the vertices of a cube red, blue, or green such that no edge connects two vertices of the same color? Rotations and reflections are considered distinct colorings.
2019 USA TSTST, 2
Let $ABC$ be an acute triangle with circumcircle $\Omega$ and orthocenter $H$. Points $D$ and $E$ lie on segments $AB$ and $AC$ respectively, such that $AD = AE$. The lines through $B$ and $C$ parallel to $\overline{DE}$ intersect $\Omega$ again at $P$ and $Q$, respectively. Denote by $\omega$ the circumcircle of $\triangle ADE$.
[list=a]
[*] Show that lines $PE$ and $QD$ meet on $\omega$.
[*] Prove that if $\omega$ passes through $H$, then lines $PD$ and $QE$ meet on $\omega$ as well.
[/list]
[i]Merlijn Staps[/i]