This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 801

1989 APMO, 4

Let $S$ be a set consisting of $m$ pairs $(a,b)$ of positive integers with the property that $1 \leq a < b \leq n$. Show that there are at least \[ 4m \cdot \dfrac{(m - \dfrac{n^2}{4})}{3n} \] triples $(a,b,c)$ such that $(a,b)$, $(a,c)$, and $(b,c)$ belong to $S$.

2014 IMS, 9

Let $G$ be a $2n-$vertices simple graph such that in any partition of the set of vertices of $G$ into two $n-$vertices sets $V_1$ and $V_2$, the number of edges from a vertex in $V_1$ to another vertex in $V_1$ is equal to the number of edges from a vertex in $V_2$ to another vertex in $V_2$. Prove that all the vertices have equal degrees.

2015 USA Team Selection Test, 3

A physicist encounters $2015$ atoms called usamons. Each usamon either has one electron or zero electrons, and the physicist can't tell the difference. The physicist's only tool is a diode. The physicist may connect the diode from any usamon $A$ to any other usamon $B$. (This connection is directed.) When she does so, if usamon $A$ has an electron and usamon $B$ does not, then the electron jumps from $A$ to $B$. In any other case, nothing happens. In addition, the physicist cannot tell whether an electron jumps during any given step. The physicist's goal is to isolate two usamons that she is sure are currently in the same state. Is there any series of diode usage that makes this possible? [i]Proposed by Linus Hamilton[/i]

1996 IMO Shortlist, 1

We are given a positive integer $ r$ and a rectangular board $ ABCD$ with dimensions $ AB \equal{} 20, BC \equal{} 12$. The rectangle is divided into a grid of $ 20 \times 12$ unit squares. The following moves are permitted on the board: one can move from one square to another only if the distance between the centers of the two squares is $ \sqrt {r}$. The task is to find a sequence of moves leading from the square with $ A$ as a vertex to the square with $ B$ as a vertex. (a) Show that the task cannot be done if $ r$ is divisible by 2 or 3. (b) Prove that the task is possible when $ r \equal{} 73$. (c) Can the task be done when $ r \equal{} 97$?

2009 China Team Selection Test, 2

Let $ n,k$ be given positive integers satisfying $ k\le 2n \minus{} 1$. On a table tennis tournament $ 2n$ players take part, they play a total of $ k$ rounds match, each round is divided into $ n$ groups, each group two players match. The two players in different rounds can match on many occasions. Find the greatest positive integer $ m \equal{} f(n,k)$ such that no matter how the tournament processes, we always find $ m$ players each of pair of which didn't match each other.

2012 AMC 12/AHSME, 19

Adam, Benin, Chiang, Deshawn, Esther, and Fiona have internet accounts. Some, but not all, of them are internet friends with each other, and none of them has an internet friend outside this group. Each of them has the same number of internet friends. In how many different ways can this happen? $ \textbf{(A)}\ 60 \qquad\textbf{(B)}\ 170 \qquad\textbf{(C)}\ 290 \qquad\textbf{(D)}\ 320 \qquad\textbf{(E)}\ 660 $

2016 Iran MO (3rd Round), 3

There are $24$ robots on the plane. Each robot has a $70^{\circ}$ field of view. What is the maximum number of observing relations? (Observing is a one-sided relation)

2013 USA Team Selection Test, 1

A social club has $2k+1$ members, each of whom is fluent in the same $k$ languages. Any pair of members always talk to each other in only one language. Suppose that there were no three members such that they use only one language among them. Let $A$ be the number of three-member subsets such that the three distinct pairs among them use different languages. Find the maximum possible value of $A$.

2024 India IMOTC, 16

There are $n$ cities in a country, one of which is the capital. An airline operates bi-directional flights between some pairs of cities such that one can reach any city from any other city. The airline wants to close down some (possibly zero) number of flights, such that the number of flights needed to reach any particular city from the capital does not increase. Suppose that there are an odd number of ways that the airline can do this. Prove that the set of cities can be divided into two groups, such that there is no flight between two cities of the same group. [i]Proposed by Pranjal Srivastava[/i]

2021 Francophone Mathematical Olympiad, 2

Evariste has drawn twelve triangles as follows, so that two consecutive triangles share exactly one edge. [img]https://cdn.artofproblemsolving.com/attachments/6/2/50377e7ad5fb1c40e36725e43c7eeb1e3c2849.png[/img] Sophie colors every triangle side in red, green or blue. Among the $3^{24}$ possible colorings, how many have the property that every triangle has one edge of each color?

2006 Germany Team Selection Test, 3

Consider a $m\times n$ rectangular board consisting of $mn$ unit squares. Two of its unit squares are called [i]adjacent[/i] if they have a common edge, and a [i]path[/i] is a sequence of unit squares in which any two consecutive squares are adjacent. Two parths are called [i]non-intersecting[/i] if they don't share any common squares. Each unit square of the rectangular board can be colored black or white. We speak of a [i]coloring[/i] of the board if all its $mn$ unit squares are colored. Let $N$ be the number of colorings of the board such that there exists at least one black path from the left edge of the board to its right edge. Let $M$ be the number of colorings of the board for which there exist at least two non-intersecting black paths from the left edge of the board to its right edge. Prove that $N^{2}\geq M\cdot 2^{mn}$.

2019 Balkan MO Shortlist, C4

A town-planner has built an isolated city whose road network consists of $2N$ roundabouts, each connecting exactly three roads. A series of tunnels and bridges ensure that all roads in the town meet only at roundabouts. All roads are two-way, and each roundabout is oriented clockwise. Vlad has recently passed his driving test, and is nervous about roundabouts. He starts driving from his house, and always takes the first edit at each roundabout he encounters. It turns out his journey incluldes every road in the town in both directions before he arrives back at the starting point in the starting direction. For what values of $N$ is this possible?

2005 Tuymaada Olympiad, 3

The organizers of a mathematical congress found that if they accomodate any participant in a room the rest can be accomodated in double rooms so that 2 persons living in each room know each other. Prove that every participant can organize a round table on graph theory for himself and an even number of other people so that each participant of the round table knows both his neigbours. [i]Proposed by S. Berlov, S. Ivanov[/i]

2011 Croatia Team Selection Test, 2

There were finitely many persons at a party among whom some were friends. Among any $4$ of them there were either $3$ who were all friends among each other or $3$ who weren't friend with each other. Prove that you can separate all the people at the party in two groups in such a way that in the first group everyone is friends with each other and that all the people in the second group are not friends to anyone else in second group. (Friendship is a mutual relation).

2017 AIME Problems, 11

Five towns are connected by a system of roads. There is exactly one road connecting each pair of towns. Find the number of ways there are to make all the roads one-way in such a way that it is still possible to get from any town to any other town using the roads (possibly passing through other towns on the way).

2007 IMO Shortlist, 6

In a mathematical competition some competitors are friends. Friendship is always mutual. Call a group of competitors a [i]clique[/i] if each two of them are friends. (In particular, any group of fewer than two competitiors is a clique.) The number of members of a clique is called its [i]size[/i]. Given that, in this competition, the largest size of a clique is even, prove that the competitors can be arranged into two rooms such that the largest size of a clique contained in one room is the same as the largest size of a clique contained in the other room. [i]Author: Vasily Astakhov, Russia[/i]

1990 Baltic Way, 19

What is the largest possible number of subsets of the set $\{1, 2, \dots , 2n+1\}$ such that the intersection of any two subsets consists of one or several consecutive integers?

2018 Thailand TST, 2

A positive integer $n < 2017$ is given. Exactly $n$ vertices of a regular 2017-gon are colored red, and the remaining vertices are colored blue. Prove that the number of isosceles triangles whose vertices are monochromatic does not depend on the chosen coloring (but does depend on $n$.)

2021-IMOC, C6

Two people play a game on a graph with $2022$ points. Initially, there are no edges in the graph. They take turns and connect two non-neighbouring vertices with an edge. Whoever makes the graph connected loses. Which player has a winning strategy? [i]ST, danny2915[/i]

2001 China Team Selection Test, 2.2

Given distinct positive integers \( g \) and \( h \), let all integer points on the number line \( OX \) be vertices. Define a directed graph \( G \) as follows: for any integer point \( x \), \( x \rightarrow x + g \), \( x \rightarrow x - h \). For integers \( k, l (k < l) \), let \( G[k, l] \) denote the subgraph of \( G \) with vertices limited to the interval \([k, l]\). Find the largest positive integer \( \alpha \) such that for any integer \( r \), the subgraph \( G[r, r + \alpha - 1] \) of \( G \) is acyclic. Clarify the structure of subgraphs \( G[r, r + \alpha - 1] \) and \( G[r, r + \alpha] \) (i.e., how many connected components and what each component is like).

2000 IMO Shortlist, 4

Let $ n$ and $ k$ be positive integers such that $ \frac{1}{2} n < k \leq \frac{2}{3} n.$ Find the least number $ m$ for which it is possible to place $ m$ pawns on $ m$ squares of an $ n \times n$ chessboard so that no column or row contains a block of $ k$ adjacent unoccupied squares.

2024 Germany Team Selection Test, 2

Let $n\geqslant 2$ be a positive integer. Paul has a $1\times n^2$ rectangular strip consisting of $n^2$ unit squares, where the $i^{\text{th}}$ square is labelled with $i$ for all $1\leqslant i\leqslant n^2$. He wishes to cut the strip into several pieces, where each piece consists of a number of consecutive unit squares, and then [i]translate[/i] (without rotating or flipping) the pieces to obtain an $n\times n$ square satisfying the following property: if the unit square in the $i^{\text{th}}$ row and $j^{\text{th}}$ column is labelled with $a_{ij}$, then $a_{ij}-(i+j-1)$ is divisible by $n$. Determine the smallest number of pieces Paul needs to make in order to accomplish this.

1980 Bulgaria National Olympiad, Problem 3

Each diagonal of the base and each lateral edge of a $9$-gonal pyramid is colored either green or red. Show that there must exist a triangle with the vertices at vertices of the pyramid having all three sides of the same color.

2022 Olimphíada, 3

Let $m$ and $n$ be positive integers. In Philand, the Kingdom of Olymphics, with $m$ cities, and the Kingdom of Mathematicians for Fun, with $n$ cities, fight a battle in rounds. Some cities in the country are connected by roads, so that it is possible to travel through all the cities via the roads. In each round of the battle, if all cities neighboring, that is, connected directly by a road, a city in one of the kingdoms are from the other kingdom, that city is conquered in the next round and switches to the other kingdom. Knowing that between the first and second round, at least one city is not conquered, show that at some point the battle must end, i.e., no city can be captured by another kingdom.

2015 Bangladesh Mathematical Olympiad, 4

There are $36$ participants at a BdMO event. Some of the participants shook hands with each other. But no two participants shook hands with each other more than once. Each participant recorded the number of handshakes they made. It was found that no two participants with the same number of handshakes made, had shaken hands with each other. Find the maximum possible number of handshakes at the party with proof. (When two participants shake hands with each other, this will be counted as one handshake.)