Found problems: 583
2008 Bundeswettbewerb Mathematik, 2
Let the positive integers $ a,b,c$ chosen such that the quotients $ \frac{bc}{b\plus{}c},$ $ \frac{ca}{c\plus{}a}$ and $ \frac{ab}{a\plus{}b}$ are integers. Prove that $ a,b,c$ have a common divisor greater than 1.
2013 All-Russian Olympiad, 3
$100$ distinct natural numbers $a_1, a_2, a_3, \ldots, a_{100}$ are written on the board. Then, under each number $a_i$, someone wrote a number $b_i$, such that $b_i$ is the sum of $a_i$ and the greatest common factor of the other $99$ numbers. What is the least possible number of distinct natural numbers that can be among $b_1, b_2, b_3, \ldots, b_{100}$?
1996 All-Russian Olympiad, 5
At the vertices of a cube are written eight pairwise distinct natural numbers, and on each of its edges is written the greatest common divisor of the numbers at the endpoints of the edge. Can the sum of the numbers written at the vertices be the same as the sum of the numbers written at the edges?
[i]A. Shapovalov[/i]
2015 Rioplatense Mathematical Olympiad, Level 3, 5
For a positive integer number $n$ we denote $d(n)$ as the greatest common divisor of the binomial coefficients $\dbinom{n+1}{n} , \dbinom{n+2}{n} ,..., \dbinom{2n}{n}$.
Find all possible values of $d(n)$
1997 Romania Team Selection Test, 4
Let $n\ge 2$ be an integer and let $P(X)=X^n+a_{n-1}X^{n-1}+\ldots +a_1X+1$ be a polynomial with positive integer coefficients. Suppose that $a_k=a_{n-k}$ for all $k\in 1,2,\ldots,n-1$. Prove that there exist infinitely many pairs of positive integers $x,y$ such that $x|P(y)$ and $y|P(x)$.
[i]Remus Nicoara[/i]
2002 India IMO Training Camp, 9
On each day of their tour of the West Indies, Sourav and Srinath have either an apple or an orange for breakfast. Sourav has oranges for the first $m$ days, apples for the next $m$ days, followed by oranges for the next $m$ days, and so on. Srinath has oranges for the first $n$ days, apples for the next $n$ days, followed by oranges for the next $n$ days, and so on.
If $\gcd(m,n)=1$, and if the tour lasted for $mn$ days, on how many days did they eat the same kind of fruit?
2013 Iran Team Selection Test, 8
Find all Arithmetic progressions $a_{1},a_{2},...$ of natural numbers for which there exists natural number $N>1$ such that for every $k\in \mathbb{N}$:
$a_{1}a_{2}...a_{k}\mid a_{N+1}a_{N+2}...a_{N+k}$
2019 Saint Petersburg Mathematical Olympiad, 2
On the blackboard there are written $100$ different positive integers . To each of these numbers is added the $\gcd$ of the $99$ other numbers . In the new $100$ numbers , is it possible for $3$ of them to be equal.
[i] (С. Берлов)[/i]
1987 IMO Longlists, 34
(a) Let $\gcd(m, k) = 1$. Prove that there exist integers $a_1, a_2, . . . , a_m$ and $b_1, b_2, . . . , b_k$ such that each product $a_ib_j$ ($i = 1, 2, \cdots ,m; \ j = 1, 2, \cdots, k$) gives a different residue when divided by $mk.$
(b) Let $\gcd(m, k) > 1$. Prove that for any integers $a_1, a_2, . . . , a_m$ and $b_1, b_2, . . . , b_k$ there must be two products $a_ib_j$ and $a_sb_t$ ($(i, j) \neq (s, t)$) that give the same residue when divided by $mk.$
[i]Proposed by Hungary.[/i]
1979 AMC 12/AHSME, 30
[asy]
/*Using regular asymptote, this diagram would take 30 min to make. Using cse5, this takes 5 minutes. Conclusion? CSE5 IS THE BEST PACKAGE EVER CREATED!!!!*/
size(100);
import cse5;
pathpen=black;
anglefontpen=black;
pointpen=black;
anglepen=black;
dotfactor=3;
pair A=(0,0),B=(0.5,0.5*sqrt(3)),C=(3,0),D=(1.7,0),EE;
EE=(B+C)/2;
D(MP("$A$",A,W)--MP("$B$",B,N)--MP("$C$",C,E)--cycle);
D(MP("$E$",EE,N)--MP("$D$",D,S));
D(D);D(EE);
MA("80^\circ",8,D,EE,C,0.1);
MA("20^\circ",8,EE,C,D,0.3,2,shift(1,3)*C);
draw(arc(shift(-0.1,0.05)*C,0.25,100,180),arrow =ArcArrow());
MA("100^\circ",8,A,B,C,0.1,0);
MA("60^\circ",8,C,A,B,0.1,0);
//Credit to TheMaskedMagician for the diagram
[/asy]
In $\triangle ABC$, $E$ is the midpoint of side $BC$ and $D$ is on side $AC$. If the length of $AC$ is $1$ and $\measuredangle BAC = 60^\circ$, $\measuredangle ABC = 100^\circ$, $\measuredangle ACB = 20^\circ$ and $\measuredangle DEC = 80^\circ$, then the area of $\triangle ABC$ plus twice the area of $\triangle CDE$ equals
$\textbf{(A) }\frac{1}{4}\cos 10^\circ\qquad\textbf{(B) }\frac{\sqrt{3}}{8}\qquad\textbf{(C) }\frac{1}{4}\cos 40^\circ\qquad\textbf{(D) }\frac{1}{4}\cos 50^\circ\qquad\textbf{(E) }\frac{1}{8}$
2019 CMIMC, 2
Determine the number of ordered pairs of positive integers $(m,n)$ with $1\leq m\leq 100$ and $1\leq n\leq 100$ such that
\[
\gcd(m+1,n+1) = 10\gcd(m,n).
\]
2009 ELMO Problems, 1
Let $a,b,c$ be positive integers such that $a^2 - bc$ is a square. Prove that $2a + b + c$ is not prime.
[i]Evan o'Dorney[/i]
2016 Macedonia JBMO TST, 5
Solve the following equation in the set of positive integers
$x + y^2 + (GCD(x, y))^2 = xy \cdot GCD(x, y)$.
1993 China Team Selection Test, 1
Find all integer solutions to $2 x^4 + 1 = y^2.$
2009 Moldova Team Selection Test, 2
$ f(x)$ and $ g(x)$ are two polynomials with nonzero degrees and integer coefficients, such that $ g(x)$ is a divisor of $ f(x)$ and the polynomial $ f(x)\plus{}2009$ has $ 50$ integer roots. Prove that the degree of $ g(x)$ is at least $ 5$.
2010 NZMOC Camp Selection Problems, 4
Find all positive integer solutions $(a, b)$ to the equation $$\frac{1}{a}+\frac{1}{b}+ \frac{n}{lcm(a,b)}=\frac{1}{gcd(a, b)}$$ for
(i) $n = 2007$;
(ii) $n = 2010$.
2013 India Regional Mathematical Olympiad, 6
Let $P(x)=x^3+ax^2+b$ and $Q(x)=x^3+bx+a$, where $a$ and $b$ are nonzero real numbers. Suppose that the roots of the equation $P(x)=0$ are the reciprocals of the roots of the equation $Q(x)=0$. Prove that $a$ and $b$ are integers. Find the greatest common divisor of $P(2013!+1)$ and $Q(2013!+1)$.
1996 Flanders Math Olympiad, 2
Determine the gcd of all numbers of the form $p^8-1$, with p a prime above 5.
2000 Putnam, 2
Prove that the expression \[ \dfrac {\text {gcd}(m, n)}{n} \dbinom {n}{m} \] is an integer for all pairs of integers $ n \ge m \ge 1 $.
2010 AMC 12/AHSME, 20
Arithmetic sequences $ (a_n)$ and $ (b_n)$ have integer terms with $ a_1 \equal{} b_1 \equal{} 1 < a_2 \le b_2$ and $ a_nb_n \equal{} 2010$ for some $ n$. What is the largest possible value of $ n$?
$ \textbf{(A)}\ 2 \qquad
\textbf{(B)}\ 3 \qquad
\textbf{(C)}\ 8 \qquad
\textbf{(D)}\ 288 \qquad
\textbf{(E)}\ 2009$
2012 District Olympiad, 3
Let $G$ a $n$ elements group. Find all the functions $f:G\rightarrow \mathbb{N}^*$ such that:
(a) $f(x)=1$ if and only if $x$ is $G$'s identity;
(b) $f(x^k)=\frac{f(x)}{(f(x),k)}$ for any divisor $k$ of $n$, where $(r,s)$ stands for the greatest common divisor of the positive integers $r$ and $s$.
2023 Bundeswettbewerb Mathematik, 1
Determine the greatest common divisor of the numbers $p^6-7p^2+6$ where $p$ runs through the prime numbers $p \ge 11$.
2008 Mexico National Olympiad, 2
We place $8$ distinct integers in the vertices of a cube and then write the greatest common divisor of each pair of adjacent vertices on the edge connecting them. Let $E$ be the sum of the numbers on the edges and $V$ the sum of the numbers on the vertices.
a) Prove that $\frac23E\le V$.
b) Can $E=V$?
2009 China National Olympiad, 3
Given an integer $ n > 3.$ Prove that there exists a set $ S$ consisting of $ n$ pairwisely distinct positive integers such that for any two different non-empty subset of $ S$:$ A,B, \frac {\sum_{x\in A}x}{|A|}$ and $ \frac {\sum_{x\in B}x}{|B|}$ are two composites which share no common divisors.
PEN A Problems, 114
What is the greatest common divisor of the set of numbers \[\{{16}^{n}+10n-1 \; \vert \; n=1,2,\cdots \}?\]