Found problems: 136
2000 Saint Petersburg Mathematical Olympiad, 11.6
What is the greatest amount of rooks that can be placed on an $n\times n$ board, such that each rooks beats an even number of rooks? A rook is considered to beat another rook, if they lie on one vertical or one horizontal line and no rooks are between them.
[I]Proposed by D. Karpov[/i]
2024 SG Originals, Q5
Let $p$ be a prime number. Determine the largest possible $n$ such that the following holds: it is possible to fill an $n\times n$ table with integers $a_{ik}$ in the $i$th row and $k$th column, for $1\le i,k\le n$, such that for any quadruple $i,j,k,l$ with $1\le i<j\le n$ and $1\le k<l\le n$, the number $a_{ik}a_{jl}-a_{il}a_{jk}$ is not divisible by $p$.
[i]Proposed by oneplusone[/i]
2022 IMO, 6
Let $n$ be a positive integer. A [i]Nordic[/i] square is an $n \times n$ board containing all the integers from $1$ to $n^2$ so that each cell contains exactly one number. Two different cells are considered adjacent if they share a common side. Every cell that is adjacent only to cells containing larger numbers is called a [i]valley[/i]. An [i]uphill path[/i] is a sequence of one or more cells such that:
(i) the first cell in the sequence is a valley,
(ii) each subsequent cell in the sequence is adjacent to the previous cell, and
(iii) the numbers written in the cells in the sequence are in increasing order.
Find, as a function of $n$, the smallest possible total number of uphill paths in a Nordic square.
Author: Nikola Petrović
2000 ITAMO, 5
A man disposes of sufficiently many metal bars of length $2$ and wants to construct a grill of the shape of an $n \times n$ unit net. He is allowed to fold up two bars at an endpoint or to cut a bar into two equal pieces, but two bars may not overlap or intersect. What is the minimum number of pieces he must use?
1997 Estonia National Olympiad, 4
In a $3n \times 3n$ grid, each square is either black or red. Each red square not on the edge of the grid has exactly five black squares among its eight neighbor squares.. On every black square that not at the edge of the grid, there are exactly four reds in the adjacent squares box. How many black and how many red squares are in the grid?
2023 Bangladesh Mathematical Olympiad, P10
Joy has a square board of size $n \times n$. At every step, he colours a cell of the board. He cannot colour any cell more than once. He also counts points while colouring the cells. At first, he has $0$ points. Every step, after colouring a cell $c$, he takes the largest possible set $S$ that creates a "$+$" sign where all cells are coloured and $c$ lies in the centre. Then, he gets the size of set $S$ as points. After colouring the whole $n \times n$ board, what is the maximum possible amount of points he can get?
2009 Estonia Team Selection Test, 5
A strip consists of $n$ squares which are numerated in their order by integers $1,2,3,..., n$. In the beginning, one square is empty while each remaining square contains one piece. Whenever a square contains a piece and its some neighbouring square contains another piece while the square immediately following the neighbouring square is empty, one may raise the first piece over the second one to the empty square, removing the second piece from the strip.
Find all possibilites which square can be initially empty, if it is possible to reach a state where the strip contains only one piece and
a) $n = 2008$,
b) $n = 2009$.
2013 Ukraine Team Selection Test, 2
The teacher reported to Peter an odd integer $m \le 2013$ and gave the guy a homework. Petrick should star the cells in the $2013 \times 2013$ table so to make the condition true: if there is an asterisk in some cell in the table, then or in row or column containing this cell should be no more than $m$ stars (including this one). Thus in each cell of the table the guy can put at most one star. The teacher promised Peter that his assessment would be just the number of stars that the guy will be able to place. What is the greatest number will the stars be able to place in the table Petrick?
2006 Mexico National Olympiad, 3
Let $n$ be an integer greater than $1$. In how many ways can we fill all the numbers $1, 2,..., 2n$ in the boxes of a grid of $2\times n$, one in each box, so that any two consecutive numbers are they in squares that share one side of the grid?
2025 Kyiv City MO Round 1, Problem 2
Is it possible to write positive integers from $1$ to $2025$ in the cells of a \( 45 \times 45 \) grid such that each number is used exactly once, and at the same time, each written number is either greater than all the numbers located in its side-adjacent cells or smaller than all the numbers located in its side-adjacent cells?
[i]Proposed by Anton Trygub[/i]
2013 Germany Team Selection Test, 2
Given a $m\times n$ grid rectangle with $m,n \ge 4$ and a closed path $P$ that is not self intersecting from inner points of the grid, let $A$ be the number of points on $P$ such that $P$ does not turn in them and let $B$ be the number of squares that $P$ goes through two non-adjacent sides of them furthermore let $C$ be the number of squares with no side in $P$. Prove that $$A=B-C+m+n-1.$$
2017 AIME Problems, 11
Consider arrangements of the $9$ numbers $1, 2, 3, \dots, 9$ in a $3 \times 3$ array. For each such arrangement, let $a_1$, $a_2$, and $a_3$ be the medians of the numbers in rows $1$, $2$, and $3$ respectively, and let $m$ be the median of $\{a_1, a_2, a_3\}$. Let $Q$ be the number of arrangements for which $m = 5$. Find the remainder when $Q$ is divided by $1000$.
2019 Tuymaada Olympiad, 7
$N$ cells chosen on a rectangular grid. Let $a_i$ is number of chosen cells in $i$-th row, $b_j$ is number of chosen cells in $j$-th column. Prove that
$$ \prod_{i} a_i! \cdot \prod_{j} b_j! \leq N! $$
2023 Kurschak Competition, 2
Let $n\geq 2$ be a positive integer. We call a [i]vertex[/i] every point in the coordinate plane, whose $x$ and $y$ coordinates both are from the set $\{1,2,3,...,n\}$. We call a segment between two vertices an [i]edge[/i], if its length if $1$. We've colored some edges red, such that between any two vertices, there is a unique path of red edges (a path may contain each edge at most once). The red edge $f$ is [i]vital[/i] for an edge $e$, if the path of red edges connecting the two endpoints of $e$ contain $f$. Prove that there is a red edge, such that it is vital for at least $n$ edges.
2022 Latvia Baltic Way TST, P5
Let $n \ge 2$ be a positive integer. An $n\times n$ grid of squares has been colored as a chessboard. Let a [i]move[/i] consist of picking a square from the board and then changing the colors to the opposite for all squares that lie in the same row as the chosen square, as well as for all squares that lie in the same column (the chosen square itself is also changed to the opposite color). Find all values of $n$ for which it is possible to make all squares of the grid be the same color in a finite sequence of moves.
2009 Greece Junior Math Olympiad, 4
In the figure we see the paths connecting the square of a city (point $P$) with the school (point $S$). In the square there are $k$ pupils starting to go to the school. They have the ability to move only to the right and up. If the pupils are free to choose any allowed path (in order to get to school), determine the minimum value of $k$ so that in any case at least two pupils follow the same path.
[img]https://cdn.artofproblemsolving.com/attachments/e/2/b5d6c6db5942cb706428cb63af3ca15590727f.png[/img]
Novosibirsk Oral Geo Oly VIII, 2017.4
On grid paper, mark three nodes so that in the triangle they formed, the sum of the two smallest medians equals to half-perimeter.
KoMaL A Problems 2024/2025, A. 887
A non self-intersecting polygon is given in a Cartesian coordinate system such that its perimeter contains no lattice points, and its vertices have no integer coordinates. A point is called semi-integer if exactly one of its coordinates is an integer. Let $P_1, P_2,\ldots, P_k$ denote the semi-integer points on the perimeter of the polygon. Let ni denote the floor of the non-integer coordinate of $P_i$. Prove that integers $n_1,n_2,\ldots ,n_k$ can be divided into two groups with the same sum.
[i]Proposed by Áron Bán-Szabó, Budapest[/i]
2012 Tuymaada Olympiad, 1
Tanya and Serezha take turns putting chips in empty squares of a chessboard. Tanya starts with a chip in an arbitrary square. At every next move, Serezha must put a chip in the column where Tanya put her last chip, while Tanya must put a chip in the row where Serezha put his last chip. The player who cannot make a move loses. Which of the players has a winning strategy?
[i]Proposed by A. Golovanov[/i]
2013 Saudi Arabia IMO TST, 1
Adel draws an $m \times n$ grid of dots on the coordinate plane, at the points of integer coordinates $(a,b)$ where $1 \le a \le m$ and $1 \le b \le n$. He proceeds to draw a closed path along $k$ of these dots, $(a_1, b_1)$,$(a_2,b_2)$,...,$(a_k,b_k)$, such that $(a_i,b_i)$ and $(a_{i+1}, b_{i+1})$ (where $(a_{k+1}, b_{k+1}) = (a_1, b_1)$) are $1$ unit apart for each $1 \le i \le k$. Adel makes sure his path does not cross itself, that is, the $k$ dots are distinct. Find, with proof, the maximum possible value of $k$ in terms of $m$ and $n$.
2018 SIMO, Q1
Sheldon and Bella play a game on an infinite grid of cells. On each of his turns, Sheldon puts one of the following tetrominoes (reflections and rotations aren't permitted)
[asy]
size(200);
draw((0, 0)--(1, 0)--(1, 2)--(0, 2)--cycle);
draw((1, 1)--(2, 1)--(2, 3)--(1, 3)--cycle);
draw((0,1)--(1,1));
draw((1,2)--(2,2));
draw((5, 0.5)--(6, 0.5)--(6, 1.5)--(5, 1.5)--cycle);
draw((6, 0.5)--(7, 0.5)--(7, 1.5)--(6, 1.5)--cycle);
draw((6, 1.5)--(7, 1.5)--(7, 2.5)--(6, 2.5)--cycle);
draw((7, 1.5)--(8, 1.5)--(8, 2.5)--(7, 2.5)--cycle);
[/asy]
somewhere on the grid without overlap. Then, Bella colors that tetromino such that it has a different color from any other tetromino that shares a side with it. After $2631$ such moves by each player, the game ends, and Sheldon's score is the number of colors used by Bella.
What's the maximum $N$ such that Sheldon can guarantee that his score will be at least $N$?
2018 Estonia Team Selection Test, 2
Find the greatest number of depicted pieces composed of $4$ unit squares that can be placed without overlapping on an $n \times n$ grid (where n is a positive integer) in such a way that it is possible to move from some corner to the opposite corner via uncovered squares (moving between squares requires a common edge). The shapes can be rotated and reflected.
[img]https://cdn.artofproblemsolving.com/attachments/b/d/f2978a24fdd737edfafa5927a8d2129eb586ee.png[/img]
2013 Balkan MO Shortlist, C3
The square $ABCD$ is divided into $n^2$ equal small (elementary) squares by parallel lines to its sides, (see the figure for the case $n = 4$). A spider starts from point$ A$ and moving only to the right and up tries to arrive at point $C$. Every ” movement” of the spider consists of: ”$k$ steps to the right and $m$ steps up” or ”$m$ steps to the right and $k$ steps up” (which can be performed in any way). The spider first makes $l$ ”movements” and in then, moves to the right or up without any restriction. If $n = m \cdot l$, find all possible ways the spider can approach the point $C$, where $n, m, k, l$ are positive integers with $k < m$.
[img]https://cdn.artofproblemsolving.com/attachments/2/d/4fb71086beb844ca7c492a30c7d333fa08d381.png[/img]
2010 Korea Junior Math Olympiad, 2
Let there be a $n\times n$ board. Write down $0$ or $1$ in all $n^2$ squares. For $1 \le k \le n$, let $A_k$ be the product of all numbers in the $k$th row. How many ways are there to write down the numbers so that $A_1 + A_2 + ... + A_n$ is even?
2008 BAMO, 4
Determine the greatest number of figures congruent to [img]https://cdn.artofproblemsolving.com/attachments/c/6/343f9197bcebf6794460ed1a74ba83ec18a377.png[/img] that can be placed in a $9 \times 9$ grid (without overlapping), such that each figure covers exactly $4$ unit squares. The figures can be rotated and flipped over. For example, the picture below shows that at least $3$ such figures can be placed in a $4 \times4$ grid.
[img]https://cdn.artofproblemsolving.com/attachments/1/e/d38fc34b650a1333742bb206c29985c94146aa.png[/img]