This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 136

2025 Vietnam Team Selection Test, 5

There is an $n \times n$ grid which has rows and columns numbered from $1$ to $n$; the cell at row $i$ and column $j$ is denoted as the cell at $(i, j)$. A subset $A$ of the cells is called [i]good[/i] if for any two cells at $(x_1, y), (x_2, y)$ in $A$, the cells $(u, v)$ satisfying $x_1 < u \leq x_2, v<y$ or $x_1 \leq u < x_2, v>y$ are not in $A$. Determine the minimal number of good sets such that they are pairwise disjoint and every cell of the board belongs to exactly one good set.

2007 Estonia Team Selection Test, 6

Consider a $10 \times 10$ grid. On every move, we colour $4$ unit squares that lie in the intersection of some two rows and two columns. A move is allowed if at least one of the $4$ squares is previously uncoloured. What is the largest possible number of moves that can be taken to colour the whole grid?

1998 Austrian-Polish Competition, 8

In each unit square of an infinite square grid a natural number is written. The polygons of area $n$ with sides going along the gridlines are called [i]admissible[/i], where $n > 2$ is a given natural number. The [i]value [/i] of an admissible polygon is defined as the sum of the numbers inside it. Prove that if the values of any two congruent admissible polygons are equal, then all the numbers written in the unit squares of the grid are equal. (We recall that a symmetric image of polygon $P$ is congruent to $P$.)

2023 Kyiv City MO Round 1, Problem 4

Positive integers $m, n$ are such that $mn$ is divisible by $9$ but not divisible by $27$. Rectangle $m \times n$ is cut into corners, each consisting of three cells. There are four types of such corners, depending on their orientation; you can see them on the figure below. Could it happen that the number of corners of each type was the exact square of some positive integer? [i]Proposed by Oleksiy Masalitin[/i] [img]https://i.ibb.co/Y8QSHyf/Kyiv-MO-2023-10-4.png[/img]

2024 Baltic Way, 10

A frog is located on a unit square of an infinite grid oriented according to the cardinal directions. The frog makes moves consisting of jumping either one or two squares in the direction it is facing, and then turning according to the following rules: i) If the frog jumps one square, it then turns $90^\circ$ to the right; ii) If the frog jumps two squares, it then turns $90^\circ$ to the left. Is it possible for the frog to reach the square exactly $2024$ squares north of the initial square after some finite number of moves if it is initially facing: a) North; b) East?

Durer Math Competition CD Finals - geometry, 2008.D1

Given a square grid where the distance between two adjacent grid points is $1$. Can the distance between two grid points be $\sqrt5, \sqrt6, \sqrt7$ or $\sqrt{2007}$ ?

2023 JBMO Shortlist, C3

Tags: combinatorics , game , grid
Alice and Bob play the following game on a $100\times 100$ grid, taking turns, with Alice starting first. Initially the grid is empty. At their turn, they choose an integer from $1$ to $100^2$ that is not written yet in any of the cells and choose an empty cell, and place it in the chosen cell. When there is no empty cell left, Alice computes the sum of the numbers in each row, and her score is the maximum of these $100$ numbers. Bob computes the sum of the numbers in each column, and his score is the maximum of these $100$ numbers. Alice wins if her score is greater than Bob's score, Bob wins if his score is greater than Alice's score, otherwise no one wins. Find if one of the players has a winning strategy, and if so which player has a winning strategy. [i]Théo Lenoir, France[/i]

2000 Junior Balkan Team Selection Tests - Romania, 2

Tags: geometry , perimeter , grid
In an urban area whose street plan is a grid, a person started walking from an intersection and turned right or left at every intersection he reached until he ended up in the same initial intersection. [b]a)[/b] Show that the number of intersections (not necessarily distinct) in which he were is equivalent to $ 1 $ modulo $ 4. $ [b]b)[/b] Enunciate and prove a reciprocal statement. [i]Marius Beceanu[/i]

2024 USEMO, 6

Let $n$ be an odd positive integer and consider an $n \times n$ chessboard of $n^2$ unit squares. In some of the cells of the chessboard, we place a knight. A knight in a cell $c$ is said to [i]attack [/i] a cell $c'$ if the distance between the centers of $c$ and $c'$ is exactly $\sqrt{5}$ (in particular, a knight does not attack the cell which it occupies). Suppose each cell of the board is attacked by an even number of knights (possibly zero). Show that the configuration of knights is symmetric with respect to all four axes of symmetry of the board (i.e. the configuration of knights is both horizontally and vertically symmetric, and also unchanged by reflection along either diagonal of the chessboard). [i]NIkolai Beluhov[/i]

2023 Kyiv City MO Round 1, Problem 3

Consider all pairs of distinct points on the Cartesian plane $(A, B)$ with integer coordinates. Among these pairs of points, find all for which there exist two distinct points $(X, Y)$ with integer coordinates, such that the quadrilateral $AXBY$ is convex and inscribed. [i]Proposed by Anton Trygub[/i]

2013 USAJMO, 2

Tags: algorithm , jmo , grid
Each cell of an $m\times n$ board is filled with some nonnegative integer. Two numbers in the filling are said to be [i]adjacent[/i] if their cells share a common side. (Note that two numbers in cells that share only a corner are not adjacent). The filling is called a [i]garden[/i] if it satisfies the following two conditions: (i) The difference between any two adjacent numbers is either $0$ or $1$. (ii) If a number is less than or equal to all of its adjacent numbers, then it is equal to $0$. Determine the number of distinct gardens in terms of $m$ and $n$.

2015 Dutch IMO TST, 1

Let $a$ and $b$ be two positive integers satifying $gcd(a, b) = 1$. Consider a pawn standing on the grid point $(x, y)$. A step of type A consists of moving the pawn to one of the following grid points: $(x+a, y+a),(x+a,y-a), (x-a, y + a)$ or $(x - a, y - a)$. A step of type B consists of moving the pawn to $(x + b,y + b),(x + b,y - b), (x - b,y + b)$ or $(x - b,y - b)$. Now put a pawn on $(0, 0)$. You can make a ( nite) number of steps, alternatingly of type A and type B, starting with a step of type A. You can make an even or odd number of steps, i.e., the last step could be of either type A or type B. Determine the set of all grid points $(x,y)$ that you can reach with such a series of steps.

2003 German National Olympiad, 3

Consider a $N\times N$ square board where $N\geq 3$ is an odd integer. The caterpillar Carl sits at the center of the square; all other cells contain distinct positive integers. An integer $n$ weights $1\slash n$ kilograms. Carl wants to leave the board but can eat at most $2$ kilograms. Determine whether Carl can always find a way out when a) $N=2003.$ b) $N$ is an arbitrary odd integer.

2025 Bangladesh Mathematical Olympiad, P3

Two player are playing in an $100 \times 100$ grid. Initially the whole board is black. On $A$'s move, he selects $4 \times 4$ subgrid and color it white. On $B$'s move, he selects a $3 \times 3$ subgrid and colors it black. $A$ wants to make the whole board white. Can he do it? [i]Proposed by S M A Nahian[/i]

2022 IMO Shortlist, C8

Let $n$ be a positive integer. A [i]Nordic[/i] square is an $n \times n$ board containing all the integers from $1$ to $n^2$ so that each cell contains exactly one number. Two different cells are considered adjacent if they share a common side. Every cell that is adjacent only to cells containing larger numbers is called a [i]valley[/i]. An [i]uphill path[/i] is a sequence of one or more cells such that: (i) the first cell in the sequence is a valley, (ii) each subsequent cell in the sequence is adjacent to the previous cell, and (iii) the numbers written in the cells in the sequence are in increasing order. Find, as a function of $n$, the smallest possible total number of uphill paths in a Nordic square. Author: Nikola Petrović

2000 Saint Petersburg Mathematical Olympiad, 10.5

Cells of a $2000\times2000$ board are colored according to the following rules: 1)At any moment a cell can be colored, if none of its neighbors are colored 2)At any moment a $1\times2$ rectangle can be colored, if exactly two of its neighbors are colored. 3)At any moment a $2\times2$ squared can be colored, if 8 of its neighbors are colored (Two cells are considered to be neighboring, if they share a common side). Can the entire $2000\times2000$ board be colored? [I]Proposed by K. Kohas[/i]

2025 Bangladesh Mathematical Olympiad, P5

In an $N \times N$ table consisting of small unit squares, some squares are coloured black and the other squares are coloured white. For each pair of columns and each pair of rows, the four squares on the intersections of these rows and columns must not all be of the same colour. What is the largest possible value of $N$?

2000 USAMO, 4

Find the smallest positive integer $n$ such that if $n$ squares of a $1000 \times 1000$ chessboard are colored, then there will exist three colored squares whose centers form a right triangle with sides parallel to the edges of the board.

Kvant 2023, M2766

Let $n{}$ be a natural number. The playing field for a "Master Sudoku" is composed of the $n(n+1)/2$ cells located on or below the main diagonal of an $n\times n$ square. A teacher secretly selects $n{}$ cells of the playing field and tells his student [list] [*]the number of selected cells on each row, and [*]that there is one selected cell on each column. [/list]The teacher's selected cells form a Master Sudoku if his student can determine them with the given information. How many Master Sudokus are there? [i]Proposed by T. Amdeberkhan, M. Ruby and F. Petrov[/i]

Russian TST 2018, P1

Let $n$ be an odd positive integer, and consider an infinite square grid. Prove that it is impossible to fill in one of $1,2$ or $3$ in every cell, which simultaneously satisfies the following conditions: (1) Any two cells which share a common side does not have the same number filled in them. (2) For any $1\times 3$ or $3\times 1$ subgrid, the numbers filled does not contain $1,2,3$ in that order be it reading from top to bottom, bottom to top, or left to right, or right to left. (3) The sum of numbers of any $n\times n$ subgrid is the same.

2002 USAMO, 6

I have an $n \times n$ sheet of stamps, from which I've been asked to tear out blocks of three adjacent stamps in a single row or column. (I can only tear along the perforations separating adjacent stamps, and each block must come out of the sheet in one piece.) Let $b(n)$ be the smallest number of blocks I can tear out and make it impossible to tear out any more blocks. Prove that there are real constants $c$ and $d$ such that \[ \dfrac{1}{7} n^2 - cn \leq b(n) \leq \dfrac{1}{5} n^2 + dn \] for all $n > 0$.

2014 Singapore Junior Math Olympiad, 5

In an $8 \times 8$ grid, $n$ disks, numbered $1$ to $n$ are stacked, with random order, in a pile in the bottom left comer. The disks can be moved one at a time to a neighbouring cell either to the right or top. The aim to move all the disks to the cell at the top right comer and stack them in the order $1,2,...,n$ from the bottom. Each cell, except the bottom left and top right cell, can have at most one disk at any given time. Find the largest value of $n$ so that the aim can be achieved.

2022 Switzerland - Final Round, 4

Let $n \geq 2$ be an integer. Switzerland and Liechtenstein are performing their annual festive show. There is a field divided into $n \times n$ squares, in which the bottom-left square contains a red house with $k$ Swiss gymnasts, and the top-right square contains a blue house with $k$ Liechtensteiner gymnasts. Every other square only has enough space for a single gymnast at a time. Each second either a Swiss gymnast or a Liechtensteiner gymnast moves. The Swiss gymnasts move to either the square immediately above or to the right and the Liechtensteiner gymnasts move either to the square immediately below or to the left. The goal is to move all the Swiss gymnasts to the blue house and all the Liechtensteiner gymnasts to the red house, with the caveat that a gymnast cannot enter a house until all the gymnasts of the other nationality have left. Determine the largest $k$ in terms of $n$ for which this is possible.

2019 Romania Team Selection Test, 3

Given an integer $n\geq 2,$ colour red exactly $n$ cells of an infinite sheet of grid paper. A rectangular grid array is called special if it contains at least two red opposite corner cells; single red cells and 1-row or 1-column grid arrays whose end-cells are both red are special. Given a configuration of exactly $n$ red cells, let $N$ be the largest number of red cells a special rectangular grid array may contain. Determine the least value $N$ may take over all possible configurations of exactly $n$ red cells

2015 Regional Olympiad of Mexico Center Zone, 3

A board of size $2015 \times 2015$ is covered with sub-boards of size $2 \times 2$, each of which is painted like chessboard. Each sub-board covers exactly $4$ squares of the board and each square of the board is covered with at least one square of a sub-board (the painted of the sub-boards can be of any shape). Prove that there is a way to cover the board in such a way that there are exactly $2015$ black squares visible. What is the maximum number of visible black squares?