This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 8

1995 IMO Shortlist, 3

The incircle of triangle $ \triangle ABC$ touches the sides $ BC$, $ CA$, $ AB$ at $ D, E, F$ respectively. $ X$ is a point inside triangle of $ \triangle ABC$ such that the incircle of triangle $ \triangle XBC$ touches $ BC$ at $ D$, and touches $ CX$ and $ XB$ at $ Y$ and $ Z$ respectively. Show that $ E, F, Z, Y$ are concyclic.

1999 Yugoslav Team Selection Test, Problem 2

Let $ABC$ be a triangle such that $\angle A=90^{\circ }$ and $\angle B<\angle C$. The tangent at $A$ to the circumcircle $\omega$ of triangle $ABC$ meets the line $BC$ at $D$. Let $E$ be the reflection of $A$ in the line $BC$, let $X$ be the foot of the perpendicular from $A$ to $BE$, and let $Y$ be the midpoint of the segment $AX$. Let the line $BY$ intersect the circle $\omega$ again at $Z$. Prove that the line $BD$ is tangent to the circumcircle of triangle $ADZ$. [hide="comment"] [i]Edited by Orl.[/i] [/hide]

2016 China Team Selection Test, 6

The diagonals of a cyclic quadrilateral $ABCD$ intersect at $P$, and there exist a circle $\Gamma$ tangent to the extensions of $AB,BC,AD,DC$ at $X,Y,Z,T$ respectively. Circle $\Omega$ passes through points $A,B$, and is externally tangent to circle $\Gamma$ at $S$. Prove that $SP\perp ST$.

Russian TST 2016, P3

The diagonals of a cyclic quadrilateral $ABCD$ intersect at $P$, and there exist a circle $\Gamma$ tangent to the extensions of $AB,BC,AD,DC$ at $X,Y,Z,T$ respectively. Circle $\Omega$ passes through points $A,B$, and is externally tangent to circle $\Gamma$ at $S$. Prove that $SP\perp ST$.

1998 IMO Shortlist, 8

Let $ABC$ be a triangle such that $\angle A=90^{\circ }$ and $\angle B<\angle C$. The tangent at $A$ to the circumcircle $\omega$ of triangle $ABC$ meets the line $BC$ at $D$. Let $E$ be the reflection of $A$ in the line $BC$, let $X$ be the foot of the perpendicular from $A$ to $BE$, and let $Y$ be the midpoint of the segment $AX$. Let the line $BY$ intersect the circle $\omega$ again at $Z$. Prove that the line $BD$ is tangent to the circumcircle of triangle $ADZ$. [hide="comment"] [i]Edited by Orl.[/i] [/hide]

2016 China Team Selection Test, 6

The diagonals of a cyclic quadrilateral $ABCD$ intersect at $P$, and there exist a circle $\Gamma$ tangent to the extensions of $AB,BC,AD,DC$ at $X,Y,Z,T$ respectively. Circle $\Omega$ passes through points $A,B$, and is externally tangent to circle $\Gamma$ at $S$. Prove that $SP\perp ST$.

2022 Abelkonkurransen Finale, 2a

A triangle $ABC$ with circumcircle $\omega$ satisfies $|AB| > |AC|$. Points $X$ and $Y$ on $\omega$ are different from $A$, such that the line $AX$ passes through the midpoint of $BC$, $AY$ is perpendicular to $BC$, and $XY$ is parallel to $BC$. Find $\angle BAC$.

2014 Sharygin Geometry Olympiad, 23

Let $A, B, C$ and $D$ be a triharmonic quadruple of points, i.e $AB\cdot CD = AC \cdot BD = AD \cdot BC.$ Let $A_1$ be a point distinct from $A$ such that the quadruple $A_1, B, C$ and $D$ is triharmonic. Points $B_1, C_1$ and $D_1$ are defined similarly. Prove that a) $A, B, C_1, D_1$ are concyclic; b) the quadruple $A_1, B_1, C_1, D_1$ is triharmonic.