This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 13

2015 Saudi Arabia GMO TST, 2

Find the number of strictly increasing sequences of nonnegative integers with the first term $0$ and the last term $15$, and among any two consecutive terms, exactly one of them is even. Lê Anh Vinh

1996 Swedish Mathematical Competition, 4

The angles at $A,B,C,D,E$ of a pentagon $ABCDE$ inscribed in a circle form an increasing sequence. Show that the angle at $C$ is greater than $\pi/2$, and that this lower bound cannot be improved.

2003 All-Russian Olympiad Regional Round, 11.3

The functions $f(x)-x$ and $f(x^2)-x^6$ are defined for all positive $x$ and increase. Prove that the function $f(x^3) -\frac{\sqrt3}{2} x^6$ also increases for all positive $x$.

1999 Israel Grosman Mathematical Olympiad, 5

An infinite sequence of distinct real numbers is given. Prove that it contains a subsequence of $1999$ terms which is either monotonically increasing or monotonically decreasing.

1988 Austrian-Polish Competition, 4

Determine all strictly increasing functions $f: R \to R$ satisfying $f (f(x) + y) = f(x + y) + f (0)$ for all $x,y \in R$.

1993 Romania Team Selection Test, 1

Let $f : R^+ \to R$ be a strictly increasing function such that $f\left(\frac{x+y}{2}\right) < \frac{f(x)+ f(y)}{2}$ for all $x,y > 0$. Prove that the sequence $a_n = f(n)$ ($n \in N$) does not contain an infinite arithmetic progression.

2015 Saudi Arabia BMO TST, 1

Find all strictly increasing functions $f : Z \to R$ such that for any $m, n \in Z$ there exists a $k \in Z$ such that $f(k) = f(m) - f(n)$. Nguyễn Duy Thái Sơn

2018 Saudi Arabia IMO TST, 1

Consider the infinite, strictly increasing sequence of positive integer $(a_n)$ such that i. All terms of sequences are pairwise coprime. ii. The sum $\frac{1}{\sqrt{a_1a_2}} +\frac{1}{\sqrt{a_2a_3}}+ \frac{1}{\sqrt{a_3a_4}} + ..$ is unbounded. Prove that this sequence contains infinitely many primes.

1999 Singapore Senior Math Olympiad, 3

Let $\{a_1,a_2,...,a_{100}\}$ be a sequence of $100$ distinct real numbers. Show that there exists either an increasing subsequence $a_{i_1}<a_{i_2}<...<a_{i_{10}}$ $(i_1<i_2<...<i_{10})$ of $10$ numbers, or a decreasing subsequence $ a_{j_1}>a_{j_2}>...>a_{j_{12}}$ $(j_1<j_2<...<j_{12})$ of $12$ numbers, or both.

2013 Saudi Arabia IMO TST, 2

Let $S = f\{0.1. 2.3,...\}$ be the set of the non-negative integers. Find all strictly increasing functions $f : S \to S$ such that $n + f(f(n)) \le 2f(n)$ for every $n$ in $S$

2005 Estonia National Olympiad, 4

A sequence of natural numbers $a_1, a_2, a_3,..$ is called [i]periodic modulo[/i] $n$ if there exists a positive integer $k$ such that, for any positive integer $i$, the terms $a_i$ and $a_{i+k}$ are equal modulo $n$. Does there exist a strictly increasing sequence of natural numbers that a) is not periodic modulo finitely many positive integers and is periodic modulo all the other positive integers? b) is not periodic modulo infinitely many positive integers and is periodic modulo infinitely many positive integers?

1998 Romania National Olympiad, 4

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function with the property that for any $a,b \in \mathbb{R},$ $a<b,$ there are $c_1,c_2 \in [a,b],$ $c_1 \le c_2$ such that $f(c_1)= \min_{x \in [a,b]} f(x)$ and $f(c_2)= \max_{x \in [a,b]} f(x).$ Prove that $f$ is increasing.

2013 Grand Duchy of Lithuania, 1

Let $f : R \to R$ and $g : R \to R$ be strictly increasing linear functions such that $f(x)$ is an integer if and only if $g(x)$ is an integer. Prove that $f(x) - g(x)$ is an integer for any $x \in R$.