This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2012 China Second Round Olympiad, 4

Let $S_n=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$, where $n$ is a positive integer. Prove that for any real numbers $a,b,0\le a\le b\le 1$, there exist infinite many $n\in\mathbb{N}$ such that \[a<S_n-[S_n]<b\] where $[x]$ represents the largest integer not exceeding $x$.

2002 China Team Selection Test, 1

Given triangle $ ABC$ and $ AB\equal{}c$, $ AC\equal{}b$ and $ BC\equal{}a$ satisfying $ a \geq b \geq c$, $ BE$ and $ CF$ are two interior angle bisectors. $ P$ is a point inside triangle $ AEF$. $ R$ and $ Q$ are the projections of $ P$ on sides $ AB$ and $ AC$. Prove that $ PR \plus{} PQ \plus{} RQ < b$.

I Soros Olympiad 1994-95 (Rus + Ukr), 11.1

Without using a calculator, prove that $$2^{1995} > 5^{856}$$

2016 Czech-Polish-Slovak Junior Match, 2

Let $x$ and $y$ be real numbers such that $x^2 + y^2 - 1 < xy$. Prove that $x + y - |x - y| < 2$. Slovakia

2002 Junior Balkan Team Selection Tests - Romania, 4

Tags: inequalities
0<a,b,c<1 ==> \sqrt (abc) + \sqrt (1-a)(1-b)(1-c) <1

1980 AMC 12/AHSME, 30

Tags: inequalities
A six digit number (base 10) is squarish if it satisfies the following conditions: (i) none of its digits are zero; (ii) it is a perfect square; and (iii) the first of two digits, the middle two digits and the last two digits of the number are all perfect squares when considered as two digit numbers. How many squarish numbers are there? $\text{(A)} \ 0 \qquad \text{(B)} \ 2 \qquad \text{(C)} \ 3 \qquad \text{(D)} \ 8 \qquad \text{(E)} \ 9$

2025 Macedonian TST, Problem 5

Let $\triangle ABC$ be a triangle with side‐lengths $a,b,c$, incenter $I$, and circumradius $R$. Denote by $P$ the area of $\triangle ABC$, and let $P_1,\;P_2,\;P_3$ be the areas of triangles $\triangle ABI$, $\triangle BCI$, and $\triangle CAI$, respectively. Prove that \[ \frac{abc}{12R} \;\le\; \frac{P_1^2 + P_2^2 + P_3^2}{P} \;\le\; \frac{3R^3}{4\sqrt[3]{abc}}. \]

1999 Mediterranean Mathematics Olympiad, 3

Tags: inequalities
Let $a,b,c\not= 0$ and $x,y,z\in\mathbb{R}^+$ such that $x+y+z=3$. Prove that \[\frac{3}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\geq\frac{x}{1+a^2}+\frac{y}{1+b^2}+\frac{z}{1+c^2}\] [color=#FF0000]Mod: before the edit, it was [/color] \[\frac{3}{2}\left (\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right )\geq\frac{x}{1+a^2}+\frac{y}{1+b^2}+\frac{z}{1+c^2}\]

2010 Balkan MO Shortlist, A1

Let $a,b$ and $c$ be positive real numbers. Prove that \[ \frac{a^2b(b-c)}{a+b}+\frac{b^2c(c-a)}{b+c}+\frac{c^2a(a-b)}{c+a} \ge 0. \]

2013 IFYM, Sozopol, 8

Tags: inequalities
Let $ x, y, z $ be positive real numbers. Prove that \[ \frac{2x^2 + xy}{(y+ \sqrt{zx} + z )^2} + \frac{2y^2 + yz}{(z+ \sqrt{xy} + x )^2} + \frac{2z^2 + zx}{(x+ \sqrt{yz} +y )^2} \ge 1 \]

2003 China Team Selection Test, 1

Tags: inequalities
$x$, $y$ and $z$ are positive reals such that $x+y+z=xyz$. Find the minimum value of: \[ x^7(yz-1)+y^7(zx-1)+z^7(xy-1) \]

1989 French Mathematical Olympiad, Problem 3

Find the greatest real $k$ such that, for every tetrahedron $ABCD$ of volume $V$, the product of areas of faces $ABC,ABD$ and $ACD$ is at least $kV^2$.

2015 Taiwan TST Round 3, 1

Let $x,y$ be the positive real numbers with $x+y=1$, and $n$ be the positive integer with $n\ge2$. Prove that \[\frac{x^n}{x+y^3}+\frac{y^n}{x^3+y}\ge\frac{2^{4-n}}{5}\]

2022 Dutch IMO TST, 3

For real numbers $x$ and $y$ we define $M(x, y)$ to be the maximum of the three numbers $xy$, $(x- 1)(y - 1)$, and $x + y - 2xy$. Determine the smallest possible value of $M(x, y)$ where $x$ and $y$ range over all real numbers satisfying $0 \le x, y \le 1$.

2003 Croatia National Olympiad, Problem 2

The product of the positive real numbers $x, y, z$ is 1. Show that if \[ \frac{1}{x}+\frac{1}{y} + \frac{1}{z} \geq x+y+z \]then \[ \frac{1}{x^{k}}+\frac{1}{y^{k}} + \frac{1}{z^{k}} \geq x^{k}+y^{k}+z^{k} \] for all positive integers $k$.

2018 Sharygin Geometry Olympiad, 3

The vertices of a triangle $DEF$ lie on different sides of a triangle $ABC$. The lengths of the tangents from the incenter of $DEF$ to the excircles of $ABC$ are equal. Prove that $4S_{DEF} \ge S_{ABC}$. [i]Note: By $S_{XYZ}$ we denote the area of triangle $XYZ$.[/i]

2014 Contests, 1

In a non-obtuse triangle $ABC$, prove that \[ \frac{\sin A \sin B}{\sin C} + \frac{\sin B \sin C}{\sin A} + \frac{\sin C \sin A}{ \sin B} \ge \frac 52. \][i]Proposed by Ryan Alweiss[/i]

2007 Moldova Team Selection Test, 1

Tags: inequalities
Let $a_{1}, a_{2}, \ldots, a_{n}\in [0;1]$. If $S=a_{1}^{3}+a_{2}^{3}+\ldots+a_{n}^{3}$ then prove that \[\frac{a_{1}}{2n+1+S-a_{1}^{3}}+\frac{a_{2}}{2n+1+S-a_{2}^{3}}+\ldots+\frac{a_{n}}{2n+1+S-a_{n}^{3}}\leq \frac{1}{3}\]

2019 Turkey MO (2nd round), 1

Tags: inequalities
$a, b, c$ are positive real numbers such that $$(\sqrt {ab}-1)(\sqrt {bc}-1)(\sqrt {ca}-1)=1$$ At most, how many of the numbers: $$a-\frac {b}{c}, a-\frac {c}{b}, b-\frac {a}{c}, b-\frac {c}{a}, c-\frac {a}{b}, c-\frac {b}{a}$$ can be bigger than $1$?

1958 Czech and Slovak Olympiad III A, 3

Find all real $x$ such that $$\sqrt{2+\frac{5}{2}\cos x}\leq\sin x.$$

2000 Harvard-MIT Mathematics Tournament, 3

Tags: inequalities
Suppose the positive integers $a,b,c$ satisfy $a^n+b^n=c^n$, where $n$ is a positive integer greater than $1$. Prove that $a,b,c>n$. (Note: Fermat's Last Theorem may [i]not[/i] be used)

2001 Belarusian National Olympiad, 2

Tags: inequalities
Prove for postitive $a$ and natural $n$ $$a^n+\frac{1}{a^n}-2 \geq n^2(a+\frac{1}{a}-2)$$

2017 Turkey MO (2nd round), 3

Denote the sequence $a_{i,j}$ in positive reals such that $a_{i,j}$.$a_{j,i}=1$. Let $c_i=\sum_{k=1}^{n}a_{k,i}$. Prove that $1\ge$$\sum_{i=1}^{n}\dfrac {1}{c_i}$

2009 Jozsef Wildt International Math Competition, W. 22

Tags: inequalities
If $a_i >0$ ($i=1, 2, \cdots , n$), then $$\left (\frac{a_1}{a_2} \right )^k + \left (\frac{a_2}{a_3} \right )^k + \cdots + \left (\frac{a_n}{a_1} \right )^k \geq \frac{a_1}{a_2}+\frac{a_2}{a_3}+\cdots + \frac{a_n}{a_1}$$ for all $k\in \mathbb{N}$

2007 Princeton University Math Competition, 1

Tags: inequalities
Suppose that $A$ is a set of integers. Denote the number of elements in $A$ by $|A|$. Define $A+A = \{a_1+a_2: a_1, a_2 \in A\}$ and $A-A = \{a_1-a_2:a_1, a_2 \in A\}$. Prove or disprove: for any set $A$, we have the inequality $|A-A| \ge |A+A|$.