Found problems: 6530
1971 Poland - Second Round, 6
Given an infinite sequence $ \{a_n\} $. Prove that if
$$ a_n + a_{n+2} > 2a_{n+1} \ \ for \ \ n = 1, 2 ... $$
then $$ \frac{a_1+a_3+\ldots a_{2n+1}}{n+1} \geq \frac{a_2+a_4+\ldots a_{2n}}{n} $$
for $ n = 1, 2, \ldots $.
2019 Jozsef Wildt International Math Competition, W. 46
Let $x$, $y$, $z > 0$ such that $x^2 + y^2 + z^2 = 3$. Then $$x^3\tan^{-1}\frac{1}{x}+y^3\tan^{-1}\frac{1}{y}+z^3\tan^{-1}\frac{1}{z}<\frac{\pi \sqrt{3}}{2}$$
1966 Czech and Slovak Olympiad III A, 1
Consider a system of inequalities \begin{align*}y-x&\ge|x+1|-|x-1|, \\ |y&-x|-y+x\ge2.\end{align*} Draw solutions of each inequality in the plane separately and highlight solution of the system.
1997 Estonia National Olympiad, 1
For positive integers $m$ and $n$ we define $T(m,n) = gcd \left(m, \frac{n}{gcd(m,n)} \right)$
(a) Prove that there are infinitely many pairs $(m,n)$ of positive integers for which $T(m,n) > 1$ and $T(n,m) > 1$.
(b) Do there exist positive integers $m,n$ such that $T(m,n) = T(n,m) > 1$?
1976 All Soviet Union Mathematical Olympiad, 223
The natural numbers $x_1$ and $x_2$ are less than $1000$. We construct a sequence:
$$x_3 = |x_1 - x_2|$$
$$x_4 = min \{ |x_1 - x_2|, |x_1 - x_3|, |x_2 - x_3|\}$$
$$...$$
$$x_k = min \{ |x_i - x_j|, 0 <i < j < k\}$$
$$...$$
Prove that $x_{21} = 0$.
2004 Pre-Preparation Course Examination, 7
Let $ G=(V,E)$ be a simple graph.
a) Let $ A,B$ be a subsets of $ E$, and spanning subgraphs of $ G$ with edges $ A,B,A\cup B$ and $ A\cap B$ have $ a,b,c$ and $ d$ connected components respectively. Prove that $ a+b\leq c+d$.
We say that subsets $ A_1,A_2,\dots,A_m$ of $ E$ have $ (R)$ property if and only if for each $ I\subset\{1,2,\dots,m\}$ the spanning subgraph of $ G$ with edges $ \cup_{i\in I}A_i$ has at most $ n-|I|$ connected components.
b) Prove that when $ A_1,\dots,A_m,B$ have $ (R)$ property, and $ |B|\geq2$, there exists an $ x\in B$ such that $ A_1,A_2,\dots,A_m,B\backslash\{x\}$ also have property $ (R)$.
Suppose that edges of $ G$ are colored arbitrarily. A spanning subtree in $ G$ is called colorful if and only if it does not have any two edges with the same color.
c) Prove that $ G$ has a colorful subtree if and only if for each partition of $ V$ to $ k$ non-empty subsets such as $ V_1,\dots,V_k$, there are at least $ k\minus{}1$ edges with distinct colors that each of these edges has its two ends in two different $ V_i$s.
d) Assume that edges of $ K_n$ has been colored such that each color is repeated $ \left[\frac n2\right]$ times. Prove that there exists a colorful subtree.
e) Prove that in part d) if $ n\geq5$ there is a colorful subtree that is non-isomorphic to $ K_{1,n-1}$.
f) Prove that in part e) there are at least two non-intersecting colorful subtrees.
1986 China Team Selection Test, 2
Let $ a_1$, $ a_2$, ..., $ a_n$ and $ b_1$, $ b_2$, ..., $ b_n$ be $ 2 \cdot n$ real numbers. Prove that the following two statements are equivalent:
[b]i)[/b] For any $ n$ real numbers $ x_1$, $ x_2$, ..., $ x_n$ satisfying $ x_1 \leq x_2 \leq \ldots \leq x_ n$, we have $ \sum^{n}_{k \equal{} 1} a_k \cdot x_k \leq \sum^{n}_{k \equal{} 1} b_k \cdot x_k,$
[b]ii)[/b] We have $ \sum^{s}_{k \equal{} 1} a_k \leq \sum^{s}_{k \equal{} 1} b_k$ for every $ s\in\left\{1,2,...,n\minus{}1\right\}$ and $ \sum^{n}_{k \equal{} 1} a_k \equal{} \sum^{n}_{k \equal{} 1} b_k$.
2020 Turkey Team Selection Test, 8
Let $x,y,z$ be real numbers such that $0<x,y,z<1$. Find the minimum value of: $$\frac {xyz(x+y+z)+(xy+yz+zx)(1-xyz)}{xyz\sqrt {1-xyz}}$$
2007 QEDMO 4th, 7
For any three nonnegative reals $a$, $b$, $c$, prove that
$\left|ca-ab\right|+\left|ab-bc\right|+\left|bc-ca\right|\leq\left|b^{2}-c^{2}\right|+\left|c^{2}-a^{2}\right|+\left|a^{2}-b^{2}\right|$.
[i]Generalization.[/i] For any $n$ nonnegative reals $a_{1}$, $a_{2}$, ..., $a_{n}$, prove that
$\sum_{i=1}^{n}\left|a_{i-1}a_{i}-a_{i}a_{i+1}\right|\leq\sum_{i=1}^{n}\left|a_{i}^{2}-a_{i+1}^{2}\right|$.
Here, the indices are cyclic modulo $n$; this means that we set $a_{0}=a_{n}$ and $a_{n+1}=a_{1}$.
darij
2009 South East Mathematical Olympiad, 7
Let $x,y,z\geq0$ be real numbers such that $x+y+z=1$ Define $f(x,y,z)$ in this way :
\[f(x,y,z)=\frac{x(2y-z)}{1+x+3y}+\frac{y(2z-x)}{1+y+3z}+\frac{z(2x-y)}{1+z+3x}\]
Find the minimum value and maximum value of $f(x,y,z)$ .
2005 China Western Mathematical Olympiad, 6
In isosceles right-angled triangle $ABC$, $CA = CB = 1$. $P$ is an arbitrary point on the sides of $ABC$. Find the maximum of $PA \cdot PB \cdot PC$.
2007 Today's Calculation Of Integral, 182
Find the area of the domain of the system of inequality
\[y(y-|x^{2}-5|+4)\leq 0,\ \ y+x^{2}-2x-3\leq 0. \]
2016 China Team Selection Test, 1
Let $n$ be an integer greater than $1$, $\alpha$ is a real, $0<\alpha < 2$, $a_1,\ldots ,a_n,c_1,\ldots ,c_n$ are all positive numbers. For $y>0$, let
$$f(y)=\left(\sum_{a_i\le y} c_ia_i^2\right)^{\frac{1}{2}}+\left(\sum_{a_i>y} c_ia_i^{\alpha} \right)^{\frac{1}{\alpha}}.$$
If positive number $x$ satisfies $x\ge f(y)$ (for some $y$), prove that $f(x)\le 8^{\frac{1}{\alpha}}\cdot x$.
2018 Thailand TST, 3
Let $n \geq 3$ be an integer. Let $a_1,a_2,\dots, a_n\in[0,1]$ satisfy $a_1 + a_2 + \cdots + a_n = 2$. Prove that
$$\sqrt{1-\sqrt{a_1}}+\sqrt{1-\sqrt{a_2}}+\cdots+\sqrt{1-\sqrt{a_n}}\leq n-3+\sqrt{9-3\sqrt{6}}.$$
2014 Korea National Olympiad, 3
Let $x, y, z$ be the real numbers that satisfies the following.
$(x-y)^2+(y-z)^2+(z-x)^2=8, x^3+y^3+z^3=1$
Find the minimum value of $x^4+y^4+z^4$.
2019 Puerto Rico Team Selection Test, 3
Find the largest value that the expression can take $a^3b + b^3a$ where $a, b$ are non-negative real numbers, with $a + b = 3$.
2001 Moldova National Olympiad, Problem 1
Find all real solutions of the equation
$$x^2+y^2+z^2+t^2=xy+yz+zt+t-\frac25.$$
1983 Polish MO Finals, 5
On the plane are given unit vectors $\overrightarrow{a_1},\overrightarrow{a_2},\overrightarrow{a_3}$. Show that one can choose numbers $c_1,c_2,c_3 \in \{-1,1\}$ such that the length of the vector $c_1\overrightarrow{a_1}+c_2\overrightarrow{a_2}+c_3\overrightarrow{a_3}$ is at least $2$.
2020 Jozsef Wildt International Math Competition, W58
In all triangles $ABC$ does it hold that:
$$\sum\sqrt{\frac{a(h_a-2r)}{(3a+b+c)(h_a+2r)}}\le\frac34$$
[i]Proposed by Mihály Bencze and Marius Drăgan[/i]
1998 Bosnia and Herzegovina Team Selection Test, 2
For positive real numbers $x$, $y$ and $z$ holds $x^2+y^2+z^2=1$. Prove that $$\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2} \leq \frac{3\sqrt{3}}{4}$$
2002 Singapore MO Open, 2
Let $a_1,a_2,...,a_n$ and $b_1,b_2,...,b_n$ be real numbers between $1001$ and $2002$ inclusive. Suppose $ \sum_{i=1}^n a_i^2= \sum_{i=1}^n b_i^2$. Prove that $$\sum_{i=1}^n\frac{a_i^3}{b_i} \le \frac{17}{10} \sum_{i=1}^n a_i^2$$
Determine when equality holds.
2006 China Team Selection Test, 1
Two positive valued sequences $\{ a_{n}\}$ and $\{ b_{n}\}$ satisfy:
(a): $a_{0}=1 \geq a_{1}$, $a_{n}(b_{n+1}+b_{n-1})=a_{n-1}b_{n-1}+a_{n+1}b_{n+1}$, $n \geq 1$.
(b): $\sum_{i=1}^{n}b_{i}\leq n^{\frac{3}{2}}$, $n \geq 1$.
Find the general term of $\{ a_{n}\}$.
2012 Postal Coaching, 1
Given a triangle $ABC$, the internal bisectors through $A$ and $B$ meet the opposite sides
in $D$ and $E$, respectively. Prove that
\[DE \le (3 - 2\sqrt2)(AB + BC + CA)\]
and determine the cases of equality.
2021 Regional Olympiad of Mexico West, 1
Let $a$ and $b$ be positive real numbers such that $a+b = 1$. Prove that
$$\frac12 \le \frac{a^3+b^3}{a^2+b^2} \le 1$$
2011 Putnam, A3
Find a real number $c$ and a positive number $L$ for which
\[\lim_{r\to\infty}\frac{r^c\int_0^{\pi/2}x^r\sin x\,dx}{\int_0^{\pi/2}x^r\cos x\,dx}=L.\]