This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2008 China Girls Math Olympiad, 3

Determine the least real number $ a$ greater than $ 1$ such that for any point $ P$ in the interior of the square $ ABCD$, the area ratio between two of the triangles $ PAB$, $ PBC$, $ PCD$, $ PDA$ lies in the interval $ \left[\frac {1}{a},a\right]$.

2020 Bulgaria Team Selection Test, 5

Given is a function $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $|f(x+y)-f(x)-f(y)|\leq 1$. Prove the existence of an additive function $g:\mathbb{R}\rightarrow \mathbb{R}$ (that is $g(x+y)=g(x)+g(y)$) such that $|f(x)-g(x)|\leq 1$ for any $x \in \mathbb{R}$

1958 November Putnam, A4

In assigning dormitory rooms, a college gives preference to pairs of students in this order: $$AA,\, AB ,\, AC, \, BB , \, BC ,\, AD , \, CC, \, BD, \, CD, \, DD$$ in which $AA$ means two seniors, $AB$ means a senior and a junior, etc. Determine numerical values to assign to $A,B,C$ and $D$ so that the set of numbers $A+A, A+B, A+C, B+B, \ldots $ corresponding to the order above will be in descending order. Find the general solution and the solution in least positive integers.

2004 National Olympiad First Round, 4

What is the difference between the maximum value and the minimum value of the sum $a_1 + 2a_2 + 3a_3 + 4a_4 + 5a_5$ where $\{a_1,a_2,a_3,a_4,a_5\} = \{1,2,3,4,5\}$? $ \textbf{(A)}\ 20 \qquad\textbf{(B)}\ 15 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ 5 \qquad\textbf{(E)}\ 0 $

1996 Turkey Team Selection Test, 3

Tags: inequalities
If $0=x_{1}<x_{2}<...<x_{2n+1}=1$ are real numbers with $x_{i+1}-x_{i} \leq h$ for $1 \leq i \leq 2n$, show that $\frac{1-h}{2}<\sum_{i=1}^{n}{x_{2i}(x_{2i+1}-x_{2i-1})}\leq \frac{1+h}{2}$

2022 IMC, 1

Let $f: [0,1] \to (0, \infty)$ be an integrable function such that $f(x)f(1-x) = 1$ for all $x\in [0,1]$. Prove that $\int_0^1f(x)dx \geq 1$.

2011 AMC 12/AHSME, 22

Let $T_1$ be a triangle with sides $2011, 2012,$ and $2013$. For $n \ge 1$, if $T_n=\triangle ABC$ and $D,E,$ and $F$ are the points of tangency of the incircle of $\triangle ABC$ to the sides $AB,BC$ and $AC$, respectively, then $T_{n+1}$ is a triangle with side lengths $AD,BE,$ and $CF$, if it exists. What is the perimeter of the last triangle in the sequence $(T_n)$? $ \textbf{(A)}\ \frac{1509}{8} \qquad \textbf{(B)}\ \frac{1509}{32} \qquad \textbf{(C)}\ \frac{1509}{64} \qquad \textbf{(D)}\ \frac{1509}{128} \qquad \textbf{(E)}\ \frac{1509}{256} $

2011 Peru MO (ONEM), 2

If $\alpha, \beta, \gamma$ are angles whose measures in radians belong to the interval $\left[0, \frac{\pi}{2}\right]$ such that: $$\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 1$$ calculate the minimum possible value of $\cos \alpha + \cos \beta + \cos \gamma$.

1971 Spain Mathematical Olympiad, 6

The velocities of a submerged and surfaced submarine are, respectively, $v$ and $kv$. It is situated at a point $P$ at $30$ miles from the center $O$ of a circle of $60$ mile radius. The surveillance of an enemy squadron forces him to navigate submerged while inside the circle. Discuss, according to the values of $k$, the fastest path to move to the opposite end of the diameter that passes through $P$ . (Consider the case particular $k =\sqrt5$.)

2004 Brazil Team Selection Test, Problem 3

Set $\mathbb Q_1=\{x\in\mathbb Q\mid x\ge1\}$. Suppose that a function $f:\mathbb Q_1\to\mathbb R$ satisfies the inequality $\left|f(x+y)-f(x)-f(y)\right|<\epsilon$ for all $x,y\in\mathbb Q_1$, where $\epsilon>0$ is given. Prove that there exists a real number $q$ such that $$\left|\frac{f(x)}x-q\right|<2\epsilon\qquad\text{for all }x\in\mathbb Q_1.$$

1999 Romania National Olympiad, 1

„œ‚Find all continuous functions $ f: \mathbb{R}\to [1,\infty)$ for wich there exists $ a\in\mathbb{R}$ and a positive integer $ k$ such that \[ f(x)f(2x)\cdot...\cdot f(nx)\leq an^k\] for all real $ x$ and all positive integers $ n$. [i]author :Radu Gologan[/i]

2001 Cuba MO, 6

The roots of the equation $ax^2 - 4bx + 4c = 0$ with $ a > 0$ belong to interval $[2, 3]$. Prove that: a) $a \le b \le c < a + b.$ b) $\frac{a}{a+c} + \frac{b}{b+a} > \frac{c}{b+c} .$

2016 India Regional Mathematical Olympiad, 3

For any natural number $n$, expressed in base $10$, let $S(n)$ denote the sum of all digits of $n$. Find all natural numbers $n$ such that $n=2S(n)^2$.

2005 Romania National Olympiad, 4

a) Prove that for all positive reals $u,v,x,y$ the following inequality takes place: \[ \frac ux + \frac vy \geq \frac {4(uy+vx)}{(x+y)^2} . \] b) Let $a,b,c,d>0$. Prove that \[ \frac a{b+2c+d} + \frac b{c+2d+a} + \frac c{d+2a+b} + \frac d{a+2b+c} \geq 1.\] [i]Traian Tămâian[/i]

2021 China Team Selection Test, 4

Proof that $$ \sum_{m=1}^n5^{\omega (m)} \le \sum_{k=1}^n\lfloor \frac{n}{k} \rfloor \tau (k)^2 \le \sum_{m=1}^n5^{\Omega (m)} .$$

2014 Contests, 3

Tags: inequalities
Positive real numbers $a, b, c$ satisfy $\frac{1}{a} +\frac{1}{b} +\frac{1}{c} = 3.$ Prove the inequality \[\frac{1}{\sqrt{a^3+ b}}+\frac{1}{\sqrt{b^3 + c}}+\frac{1}{\sqrt{c^3 + a}}\leq \frac{3}{\sqrt{2}}.\]

2000 Putnam, 6

Let $B$ be a set of more than $\tfrac{2^{n+1}}{n}$ distinct points with coordinates of the form $(\pm 1, \pm 1, \cdots, \pm 1)$ in $n$-dimensional space with $n \ge 3$. Show that there are three distinct points in $B$ which are the vertices of an equilateral triangle.

2013 Today's Calculation Of Integral, 864

Let $m,\ n$ be positive integer such that $2\leq m<n$. (1) Prove the inequality as follows. \[\frac{n+1-m}{m(n+1)}<\frac{1}{m^2}+\frac{1}{(m+1)^2}+\cdots +\frac{1}{(n-1)^2}+\frac{1}{n^2}<\frac{n+1-m}{n(m-1)}\] (2) Prove the inequality as follows. \[\frac 32\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq 2\] (3) Prove the inequality which is made precisely in comparison with the inequality in (2) as follows. \[\frac {29}{18}\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq \frac{61}{36}\]

2009 IMAC Arhimede, 1

Prove for the sidelengths $a,b,c$ of a triangle $ABC$ the inequality $\frac{a^3}{b+c-a}+\frac{b^3}{c+a-b}+\frac{c^3}{a+b-c}\ge a^2+b^2+c^2$

1990 Vietnam Team Selection Test, 1

Let be given a convex polygon $ M_0M_1\ldots M_{2n}$ ($ n\ge 1$), where $ 2n \plus{} 1$ points $ M_0$, $ M_1$, $ \ldots$, $ M_{2n}$ lie on a circle $ (C)$ with diameter $ R$ in an anticlockwise direction. Suppose that there is a point $ A$ inside this convex polygon such that $ \angle M_0AM_1$, $ \angle M_1AM_2$, $ \ldots$, $ \angle M_{2n \minus{} 1}AM_{2n}$, $ \angle M_{2n}AM_0$ are equal. Assume that $ A$ is not coincide with the center of the circle $ (C)$ and $ B$ be a point lies on $ (C)$ such that $ AB$ is perpendicular to the diameter of $ (C)$ passes through $ A$. Prove that \[ \frac {2n \plus{} 1}{\frac {1}{AM_0} \plus{} \frac {1}{AM_1} \plus{} \cdots \plus{} \frac {1}{AM_{2n}}} < AB < \frac {AM_0 \plus{} AM_1 \plus{} \cdots \plus{} AM_{2n}}{2n \plus{} 1} < R \]

2010 Contests, 3

The 2010 positive numbers $a_1, a_2, \ldots , a_{2010}$ satisfy the inequality $a_ia_j \le i+j$ for all distinct indices $i, j$. Determine, with proof, the largest possible value of the product $a_1a_2\ldots a_{2010}$.

Today's calculation of integrals, 864

Let $m,\ n$ be positive integer such that $2\leq m<n$. (1) Prove the inequality as follows. \[\frac{n+1-m}{m(n+1)}<\frac{1}{m^2}+\frac{1}{(m+1)^2}+\cdots +\frac{1}{(n-1)^2}+\frac{1}{n^2}<\frac{n+1-m}{n(m-1)}\] (2) Prove the inequality as follows. \[\frac 32\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq 2\] (3) Prove the inequality which is made precisely in comparison with the inequality in (2) as follows. \[\frac {29}{18}\leq \lim_{n\to\infty} \left(1+\frac{1}{2^2}+\cdots+\frac{1}{n^2}\right)\leq \frac{61}{36}\]

2005 Germany Team Selection Test, 1

Given the positive numbers $a$ and $b$ and the natural number $n$, find the greatest among the $n + 1$ monomials in the binomial expansion of $\left(a+b\right)^n$.

2001 China Team Selection Test, 2

Let ${a_n}$ be a non-increasing sequence of positive numbers. Prove that if for $n \ge 2001$, $na_{n} \le 1$, then for any positive integer $m \ge 2001$ and $x \in \mathbb{R}$, the following inequality holds: $\left | \sum_{k=2001}^{m} a_{k} \sin kx \right | \le 1 + \pi$

2024 Israel Olympic Revenge, P2

Let $n\geq 2$ be an integer. For each natural $m$ and each integer sequence $0<k_1<k_2<\cdots <k_m$ for which $k_1+\cdots+k_m=n$, Michael wrote down the number $\frac{1}{k_1\cdot k_2\cdots k_m} $ on the board. Prove that the sum of the numbers on the board is less than $1$.