This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2014 Denmark MO - Mohr Contest, 5

Let $x_0, x_1, . . . , x_{2014}$ be a sequence of real numbers, which for all $i < j$ satisfy $x_i + x_j \le 2j$. Determine the largest possible value of the sum $x_0 + x_1 + · · · + x_{2014}$.

2011 Kyrgyzstan National Olympiad, 6

[b]a)[/b] Among the $21$ pairwise distances between the $7$ points of the plane, prove that one and the same number occurs not more than $12$ times. [b]b)[/b] Find a maximum number of times may meet the same number among the $15$ pairwise distances between $6$ points of the plane.

JOM 2015, 3

Let $ a, b, c $ be positive real numbers greater or equal to $ 3 $. Prove that $$ 3(abc+b+2c)\ge 2(ab+2ac+3bc) $$ and determine all equality cases.

Estonia Open Senior - geometry, 2005.2.4

Three rays are going out from point $O$ in space, forming pairwise angles $\alpha, \beta$ and $\gamma$ with $0^o<\alpha \le \beta \le \gamma <180^o$. Prove that $\sin \frac{\alpha}{2}+ \sin \frac{\beta}{2} > \sin \frac{\gamma}{2}$.

1996 Iran MO (3rd Round), 2

Let $ABCD$ be a convex quadrilateral. Construct the points $P,Q,R,$ and $S$ on continue of $AB,BC,CD,$ and $DA$, respectively, such that \[BP=CQ=DR=AS.\] Show that if $PQRS$ is a square, then $ABCD$ is also a square.

2019 Korea USCM, 6

A function $f:[0,\infty)\to[0,\infty)$ is integrable and $$\int_0^\infty f(x)^2 dx<\infty,\quad \int_0^\infty xf(x) dx <\infty$$ Prove the following inequality. $$\left(\int_0^\infty f(x) dx \right)^3 \leq 8\left(\int_0^\infty f(x)^2 dx \right) \left(\int_0^\infty xf(x) dx \right)$$

2012 China Northern MO, 6

Prove that\[(1+\frac{1}{3})(1+\frac{1}{3^2})\cdots(1+\frac{1}{3^n})< 2.\]

1989 China National Olympiad, 6

Find all functions $f:(1,+\infty) \rightarrow (1,+\infty)$ that satisfy the following condition: for arbitrary $x,y>1$ and $u,v>0$, inequality $f(x^uy^v)\le f(x)^{\dfrac{1}{4u}}f(y)^{\dfrac{1}{4v}}$ holds.

2018 China Second Round Olympiad, 1

Tags: inequalities
Let $ a_1,a_2,\cdots,a_n,b_1,b_2,\cdots,b_n,A,B$ are positive reals such that $ a_i\leq b_i,a_i\leq A$ $(i=1,2,\cdots,n)$ and $\frac{b_1 b_2 \cdots b_n}{a_1 a_2 \cdots a_n}\leq \frac{B}{A}.$ Prove that$$\frac{(b_1+1) (b_2+1) \cdots (b_n+1)}{(a_1+1) (a_2+1) \cdots (a_n+1)}\leq \frac{B+1}{A+1}.$$

2012 IMC, 5

Let $c \ge 1$ be a real number. Let $G$ be an Abelian group and let $A \subset G$ be a finite set satisfying $|A+A| \le c|A|$, where $X+Y:= \{x+y| x \in X, y \in Y\}$ and $|Z|$ denotes the cardinality of $Z$. Prove that \[|\underbrace{A+A+\dots+A}_k| \le c^k |A|\] for every positive integer $k$. [i]Proposed by Przemyslaw Mazur, Jagiellonian University.[/i]

1979 Chisinau City MO, 175

Prove that if the sum of positive numbers $a, b, c$ is equal to $1$, then $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \ge 9.$

2008 Federal Competition For Advanced Students, Part 2, 1

Prove the inequality \[ \sqrt {a^{1 \minus{} a}b^{1 \minus{} b}c^{1 \minus{} c}} \le \frac {1}{3} \] holds for all positive real numbers $ a$, $ b$ and $ c$ with $ a \plus{} b \plus{} c \equal{} 1$.

2018 Taiwan TST Round 1, 2

Tags: inequalities
Assume $ a,b,c $ are arbitrary reals such that $ a+b+c = 0 $. Show that $$ \frac{33a^2-a}{33a^2+1}+\frac{33b^2-b}{33b^2+1}+\frac{33c^2-c}{33c^2+1} \ge 0 $$

2010 China Team Selection Test, 1

Let $G=G(V,E)$ be a simple graph with vertex set $V$ and edge set $E$. Suppose $|V|=n$. A map $f:\,V\rightarrow\mathbb{Z}$ is called good, if $f$ satisfies the followings: (1) $\sum_{v\in V} f(v)=|E|$; (2) color arbitarily some vertices into red, one can always find a red vertex $v$ such that $f(v)$ is no more than the number of uncolored vertices adjacent to $v$. Let $m(G)$ be the number of good maps. Prove that if every vertex in $G$ is adjacent to at least one another vertex, then $n\leq m(G)\leq n!$.

2011 Switzerland - Final Round, 6

Tags: inequalities
Let $a, b, c, d$ be positive real numbers satisfying $a+b+c+d =1$. Show that \[\frac{2}{(a+b)(c+d)} \leq \frac{1}{\sqrt{ab}}+ \frac{1}{\sqrt{cd}}\mbox{.}\] [i](Swiss Mathematical Olympiad 2011, Final round, problem 6)[/i]

2018 Romania National Olympiad, 2

Let $x>0.$ Prove that $$2^{-x}+2^{-1/x} \leq 1.$$

2021 IMO Shortlist, A5

Let $n\geq 2$ be an integer and let $a_1, a_2, \ldots, a_n$ be positive real numbers with sum $1$. Prove that $$\sum_{k=1}^n \frac{a_k}{1-a_k}(a_1+a_2+\cdots+a_{k-1})^2 < \frac{1}{3}.$$

2022 Austrian MO Beginners' Competition, 1

Show that for all real numbers $x$ and $y$ with $x > -1$ and $y > -1$ and $x + y = 1$ the inequality $$\frac{x}{y + 1} +\frac{y}{x + 1} \ge \frac23$$ holds. When does equality apply? [i](Walther Janous)[/i]

2019 China Western Mathematical Olympiad, 6

Tags: inequalities
Let $a_1,a_2,\cdots,a_n (n\ge 2)$ be positive numbers such that $a_1\leq a_2 \leq \cdots \leq a_n .$ Prove that $$\sum_{1\leq i< j \leq n} (a_i+a_j)^2\left(\frac{1}{i^2}+\frac{1}{j^2}\right)\geq 4(n-1)\sum_{i=1}^{n}\frac{a^2_i}{i^2}.$$

2005 South africa National Olympiad, 5

Let $x_1,x_2,\dots,x_n$ be positive numbers with product equal to 1. Prove that there exists a $k\in\{1,2,\dots,n\}$ such that \[\frac{x_k}{k+x_1+x_2+\cdots+x_k}\ge 1-\frac{1}{\sqrt[n]{2}}.\]

2012 Junior Balkan Team Selection Tests - Romania, 1

Let $a, b, c, d$ be distinct non-zero real numbers satisfying the following two conditions: $ac = bd$ and $\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}= 4$. Determine the largest possible value of the expression $\frac{a}{c}+\frac{c}{a}+\frac{b}{d}+\frac{d}{b}$.

2011 Harvard-MIT Mathematics Tournament, 1

Let $a,b,c$ be positive real numbers. Determine the largest total number of real roots that the following three polynomials may have among them: $ax^2+bx+c, bx^2+cx+a,$ and $cx^2+ax+b $.

2014 Regional Olympiad of Mexico Center Zone, 2

Let $x_1$, $x_2$,$x_3$, $y_1$, $y_2$, and $y_3 $ be positive real numbers, such that $x_1 + y_2 = x_2 + y_3 = x_3 + y_1 =1$. Prove that $$ x_1y_1 + x_2y_2 + x_3y_3 <1$$

2004 Bulgaria Team Selection Test, 2

Prove that if $a,b,c \ge 1$ and $a+b+c=9$, then $\sqrt{ab+bc+ca} \le \sqrt{a} +\sqrt{b} + \sqrt{c}$

2019 Silk Road, 2

Let $ a_1, $ $ a_2, $ $ \ldots, $ $ a_ {99} $ be positive real numbers such that $ ia_j + ja_i \ge i + j $ for all $ 1 \le i <j \le 99. $ Prove , that $ (a_1 + 1) (a_2 + 2) \ldots (a_ {99} +99) \ge 100!$ .