This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2018 Estonia Team Selection Test, 10

A sequence of positive real numbers $a_1, a_2, a_3, ... $ satisfies $a_n = a_{n-1} + a_{n-2}$ for all $n \ge 3$. A sequence $b_1, b_2, b_3, ...$ is defined by equations $b_1 = a_1$ , $b_n = a_n + (b_1 + b_3 + ...+ b_{n-1})$ for even $n > 1$ , $b_n = a_n + (b_2 + b_4 + ... +b_{n-1})$ for odd $n > 1$. Prove that if $n\ge 3$, then $\frac13 < \frac{b_n}{n \cdot a_n} < 1$

1995 China National Olympiad, 2

Tags: inequalities
Let $a_1,a_2,\cdots ,a_{10}$ be pairwise distinct natural numbers with their sum equal to 1995. Find the minimal value of $a_1a_2+a_2a_3+\cdots +a_9a_{10}+a_{10}a_1$.

2001 Czech And Slovak Olympiad IIIA, 3

Find all triples of real numbers $(a,b,c)$ for which the set of solutions $x$ of $\sqrt{2x^2 +ax+b} > x-c$ is the set $(-\infty,0]\cup(1,\infty)$.

2015 Regional Olympiad of Mexico Southeast, 3

If $T(n)$ is the numbers of triangles with integers sizes(not congruent with each other) with it´s perimeter is equal to $n$, prove that: $$T(2012)<T(2015)$$ $$T(2013)=T(2016)$$

2000 Singapore Senior Math Olympiad, 3

Let $n_1,n_2,n_3,...,n_{2000}$ be $2000$ positive integers satisfying $n_1<n_2<n_3<...<n_{2000}$. Prove that $$\frac{n_1}{[n_1,n_2]}+\frac{n_1}{[n_2,n_3]}+\frac{n_1}{[n_3,n_4]}+...+\frac{n_1}{[n_{1999},n_{2000}]} \le 1 - \frac{1}{2^{1999}}$$ where $[a, b]$ denotes the least common multiple of $a$ and $b$.

2014 IMAC Arhimede, 6

If $a, b, c, d$ are positive numbers, prove that $$\sum_{cyclic}\frac{a-\sqrt[3]{bcd}}{a+3(b+c+d)}\ge 0$$

2002 Greece National Olympiad, 1

The real numbers $a,b,c$ with $bc\neq0$ satisfy $\frac{1-c^2}{bc}\geq0.$ Prove that $10(a^2+b^2+c^2-bc^3)\geq2ab+5ac.$

1990 IMO Longlists, 5

Tags: inequalities
Let $x,y,z$ be positive reals and $x \geq y \geq z$. Prove that \[\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y} \geq x^2+y^2+z^2\]

2009 Princeton University Math Competition, 5

Find the maximal positive integer $n$, so that for any real number $x$ we have $\sin^{n}{x}+\cos^{n}{x} \geq \frac{1}{n}$.

2014 Junior Balkan Team Selection Tests - Romania, 1

Let $x, y, z > 0$ be real numbers such that $xyz + xy + yz + zx = 4$. Prove that $x + y + z \ge 3$.

2002 Moldova National Olympiad, 3

Tags: inequalities
Let $ a,b,c>0$. Prove that: $ \dfrac{a}{2a\plus{}b}\plus{}\dfrac{b}{2b\plus{}c}\plus{}\dfrac{c}{2c\plus{}a}\leq 1$

2010 Postal Coaching, 2

Let $M$ be an interior point of a $\triangle ABC$ such that $\angle AM B = 150^{\circ} , \angle BM C = 120^{\circ}$. Let $P, Q, R$ be the circumcentres of the $\triangle AM B, \triangle BM C, \triangle CM A$ respectively. Prove that $[P QR] \ge [ABC]$.

2012 Mexico National Olympiad, 2

Let $n \geq 4$ be an even integer. Consider an $n \times n$ grid. Two cells ($1 \times 1$ squares) are [i]neighbors[/i] if they share a side, are in opposite ends of a row, or are in opposite ends of a column. In this way, each cell in the grid has exactly four neighbors. An integer from 1 to 4 is written inside each square according to the following rules: [list] [*]If a cell has a 2 written on it, then at least two of its neighbors contain a 1. [*]If a cell has a 3 written on it, then at least three of its neighbors contain a 1. [*]If a cell has a 4 written on it, then all of its neighbors contain a 1.[/list] Among all arrangements satisfying these conditions, what is the maximum number that can be obtained by adding all of the numbers on the grid?

2011 Morocco National Olympiad, 1

Find the maximum value of the real constant $C$ such that $x^{2}+y^{2}+1\geq C(x+y)$, and $ x^{2}+y^{2}+xy+1\geq C(x+y)$ for all reals $x,y$.

I Soros Olympiad 1994-95 (Rus + Ukr), 11.2

Find the smallest positive $x$ for which holds the inequality $$\sin x \le \sin (x+1)\le \sin (x+2)\le sin (x+3)\le \sin (x+4) .$$

2012 ELMO Shortlist, 6

Consider a directed graph $G$ with $n$ vertices, where $1$-cycles and $2$-cycles are permitted. For any set $S$ of vertices, let $N^{+}(S)$ denote the out-neighborhood of $S$ (i.e. set of successors of $S$), and define $(N^{+})^k(S)=N^{+}((N^{+})^{k-1}(S))$ for $k\ge2$. For fixed $n$, let $f(n)$ denote the maximum possible number of distinct sets of vertices in $\{(N^{+})^k(X)\}_{k=1}^{\infty}$, where $X$ is some subset of $V(G)$. Show that there exists $n>2012$ such that $f(n)<1.0001^n$. [i]Linus Hamilton.[/i]

2010 Romania National Olympiad, 3

Let $G$ be a finite group of order $n$. Define the set \[H=\{x:x\in G\text{ and }x^2=e\},\] where $e$ is the neutral element of $G$. Let $p=|H|$ be the cardinality of $H$. Prove that a) $|H\cap xH|\ge 2p-n$, for any $x\in G$, where $xH=\{xh:h\in H\}$. b) If $p>\frac{3n}{4}$, then $G$ is commutative. c) If $\frac{n}{2}<p\le\frac{3n}{4}$, then $G$ is non-commutative. [i]Marian Andronache[/i]

2011 Balkan MO Shortlist, A3

Tags: inequalities
Let $n$ be an integer number greater than $2$, let $x_{1},x_{2},\ldots ,x_{n}$ be $n$ positive real numbers such that \[\sum_{i=1}^{n}\frac{1}{x_{i}+1}=1\] and let $k$ be a real number greater than $1$. Show that: \[\sum_{i=1}^{n}\frac{1}{x_{i}^{k}+1}\ge\frac{n}{(n-1)^{k}+1}\] and determine the cases of equality.

1970 IMO Longlists, 19

Tags: inequalities
Let $1<n\in\mathbb{N}$ and $1\le a\in\mathbb{R}$ and there are $n$ number of $x_i, i\in\mathbb{N}, 1\le i\le n$ such that $x_1=1$ and $\frac{x_{i}}{x_{i-1}}=a+\alpha _ i$ for $2\le i\le n$, where $\alpha _i\le \frac{1}{i(i+1)}$. Prove that $\sqrt[n-1]{x_n}< a+\frac{1}{n-1}$.

1999 Balkan MO, 3

Let $ABC$ be an acute-angled triangle of area 1. Show that the triangle whose vertices are the feet of the perpendiculars from the centroid $G$ to $AB$, $BC$, $CA$ has area between $\frac 4{27}$ and $\frac 14$.

2007 IberoAmerican Olympiad For University Students, 2

Prove that for all positive integers $n$ and for all real numbers $x$ such that $0\le x\le1$, the following inequality holds: $\left(1-x+\frac{x^2}{2}\right)^n-(1-x)^n\le\frac{x}{2}$.

1982 IMO Longlists, 28

Tags: inequalities
Let $(u_1, \ldots, u_n)$ be an ordered $n$tuple. For each $k, 1 \leq k \leq n$, define $v_k=\sqrt[k]{u_1u_2 \cdots u_k}$. Prove that \[\sum_{k=1}^n v_k \leq e \cdot \sum_{k=1}^n u_k.\] ($e$ is the base of the natural logarithm).

2000 Moldova National Olympiad, Problem 6

Assuming that real numbers $x$ and $y$ satisfy $y\left(1+x^2\right)=x\left(\sqrt{1-4y^2}-1\right)$, find the maximum value of $xy$.

2010 Contests, 1

Tags: inequalities
Given that $a,b,c > 0$ and $a + b + c = 1$. Prove that $\sqrt {\frac{{ab}}{{ab + c}}} + \sqrt {\frac{{bc}}{{bc + a}}} + \sqrt {\frac{{ca}}{{ca + b}}} \leqslant \frac{3}{2}$.

2021 International Zhautykov Olympiad, 4

Let there be an incircle of triangle $ABC$, and 3 circles each inscribed between incircle and angles of $ABC$. Let $r, r_1, r_2, r_3$ be radii of these circles ($r_1, r_2, r_3 < r$). Prove that $$r_1+r_2+r_3 \geq r$$