Found problems: 6530
1966 IMO Shortlist, 63
Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points in the interiors of the sides $ BC$, $ CA$, $ AB$ of this triangle. Prove that the area of at least one of the three triangles $ AQR$, $ BRP$, $ CPQ$ is less than or equal to one quarter of the area of triangle $ ABC$.
[i]Alternative formulation:[/i] Let $ ABC$ be a triangle, and let $ P$, $ Q$, $ R$ be three points on the segments $ BC$, $ CA$, $ AB$, respectively. Prove that
$ \min\left\{\left|AQR\right|,\left|BRP\right|,\left|CPQ\right|\right\}\leq\frac14\cdot\left|ABC\right|$,
where the abbreviation $ \left|P_1P_2P_3\right|$ denotes the (non-directed) area of an arbitrary triangle $ P_1P_2P_3$.
2002 Federal Math Competition of S&M, Problem 1
For any positive numbers $a,b,c$ and natural numbers $n,k$ prove the inequality
$$\frac{a^{n+k}}{b^n}+\frac{b^{n+k}}{c^n}+\frac{c^{n+k}}{a^n}\ge a^k+b^k+c^k.$$
2000 JBMO ShortLists, 16
Find all the triples $(x,y,z)$ of real numbers such that
\[2x\sqrt{y-1}+2y\sqrt{z-1}+2z\sqrt{x-1} \ge xy+yz+zx \]
1978 Poland - Second Round, 1
Prove that for positive real numbers $x$ and $y$ smaller than or equal to $1/2$,
\[\frac{(x+y)^2}{xy} \geq \frac{(2-xy)^2}{(1-x)(1-y)}.\]
2007 China Team Selection Test, 3
Find the smallest constant $ k$ such that
$ \frac {x}{\sqrt {x \plus{} y}} \plus{} \frac {y}{\sqrt {y \plus{} z}} \plus{} \frac {z}{\sqrt {z \plus{} x}}\leq k\sqrt {x \plus{} y \plus{} z}$
for all positive $ x$, $ y$, $ z$.
1997 China Team Selection Test, 1
Find all real-coefficient polynomials $f(x)$ which satisfy the following conditions:
[b]i.[/b] $f(x) = a_0 x^{2n} + a_2 x^{2n - 2} + \cdots + a_{2n - 2}
x^2 + a_{2n}, a_0 > 0$;
[b]ii.[/b] $\sum_{j=0}^n a_{2j} a_{2n - 2j} \leq \left(
\begin{array}{c}
2n\\
n\end{array} \right) a_0 a_{2n}$;
[b]iii.[/b] All the roots of $f(x)$ are imaginary numbers with no real part.
2015 IFYM, Sozopol, 1
Let ABCD be a convex quadrilateral such that $AB + CD = \sqrt{2}AC$ and $BC + DA = \sqrt{2}BD$. Prove that ABCD is a parallelogram.
2017 Korea Winter Program Practice Test, 4
Let $a,b,c,d$ be the area of four faces of a tetrahedron, satisfying $a+b+c+d=1$. Show that $$\sqrt[n]{a^n+b^n+c^n}+\sqrt[n]{b^n+c^n+d^n}+\sqrt[n]{c^n+d^n+a^n}+\sqrt[n]{d^n+a^n+b^n} \le 1+\sqrt[n]{2}$$ holds for all positive integers $n$.
2011 Ukraine Team Selection Test, 1
Given a right $ n $ -angle $ {{A} _ {1}} {{A} _ {2}} \ldots {{A} _ {n}} $, $n \ge 4 $, and a point $ M $ inside it. Prove the inequality $$\sin (\angle {{A} _ {1}} M {{A} _ {2}}) + \sin (\angle {{A} _ {2}} M {{A} _ {3}} ) + \ldots + \sin (\angle {{A} _ {n}} M {{A} _ {1}})> \sin \frac{2 \pi}{n} + (n-2) sin \frac{\pi}{n}$$
2014 Indonesia MO Shortlist, A3
Prove for each positive real number $x, y, z$,
$$\frac{x^2y}{x+2y}+\frac{y^2z}{y+2z}+\frac{z^2x}{z+2x}<\frac{(x+y+z)^2}{8}$$
2004 Harvard-MIT Mathematics Tournament, 1
How many ordered pairs of integers $(a,b)$ satisfy all of the following inequalities?
\begin{eqnarray*} a^2 + b^2 &<& 16 \\ a^2 + b^2 &<& 8a \\ a^2 + b^2 &<& 8b \end{eqnarray*}
2023 Turkey EGMO TST, 4
Let $n$ be a positive integer and $P,Q$ be polynomials with real coefficients with $P(x)=x^nQ(\frac{1}{x})$ and $P(x) \geq Q(x)$ for all real numbers $x$. Prove that $P(x)=Q(x)$ for all real number $x$.
2019 Slovenia Team Selection Test, 2
Prove, that for any positive real numbers $a, b, c$ who satisfy $a^2+b^2+c^2=1$ the following inequality holds.
$\sqrt{\frac{1}{a}-a}+\sqrt{\frac{1}{b}-b}+\sqrt{\frac{1}{c}-c} \geq \sqrt{2a}+\sqrt{2b}+\sqrt{2c}$
2006 District Olympiad, 2
In triangle $ABC$ we have $\angle ABC = 2 \angle ACB$. Prove that
a) $AC^2 = AB^2 + AB \cdot BC$;
b) $AB+BC < 2 \cdot AC$.
1977 Spain Mathematical Olympiad, 7
The numbers $A_1 , A_2 ,... , A_n$ are given. Prove, without calculating derivatives, that the value of $X$ that minimizes the sum $(X - A_1)^2 + (X -A_2)^2 + ...+ (X - A_n)^2$ is precisely the arithmetic mean of the given numbers.
2009 Kyrgyzstan National Olympiad, 7
Does $ a^2 \plus{} b^2 \plus{} c^2 \leqslant 2(ab \plus{} bc \plus{} ca)$ hold for every $ a,b,c$ if it is known that $ a^4 \plus{} b^4 \plus{} c^4 \leqslant 2(a^2 b^2 \plus{} b^2 c^2 \plus{} c^2 a^2 )$.
1991 Irish Math Olympiad, 2
Let $$a_n=\frac{n^2+1}{\sqrt{n^4+4}}, \quad n=1,2,3,\dots$$ and let $b_n$ be the product of $a_1,a_2,a_3,\dots ,a_n$. Prove that $$\frac{b_n}{\sqrt{2}}=\frac{\sqrt{n^2+1}}{\sqrt{n^2+2n+2}},$$ and deduce that $$\frac{1}{n^3+1}<\frac{b_n}{\sqrt{2}}-\frac{n}{n+1}<\frac{1}{n^3}$$ for all positive integers $n$.
2013 Philippine MO, 5
Let $r$ and $s$ be positive real numbers such that $(r+s-rs)(r+s+rs)=rs$. Find the minimum value of $r+s-rs$ and $r+s+rs$
1970 IMO Longlists, 10
In $\triangle ABC$, prove that $1< \sum_{cyc}{\cos A}\le \frac{3}{2}$.
1997 Israel National Olympiad, 4
Let $f : [0,1] \to [0,1]$ be a continuous, strictly increasing function such that $f(0) = 0$ and $f(1) = 1$. Prove that
$$f\left(\frac{1}{10}\right) + f\left(\frac{2}{10}\right) +...+f\left(\frac{9}{10}\right) +f^{-1}\left(\frac{1}{10}\right) +...+f^{-1}\left(\frac{9}{10}\right) \le \frac{99}{10}$$
1989 National High School Mathematics League, 13
$a_1,a_2,\cdots,a_n$ are positive numbers, satisfying that $a_1a_2\cdots a_n=1$.
Prove that $(2+a_1)(2+a_2)\cdots(2+a_n)\geq3^n$
2012 Estonia Team Selection Test, 5
Let $x, y, z$ be positive real numbers whose sum is $2012$. Find the maximum value of $$ \frac{(x^2 + y^2 + z^2)(x^3 + y^3 + z^3)}{(x^4 + y^4 + z^4)}$$
2009 Estonia Team Selection Test, 1
For arbitrary pairwise distinct positive real numbers $a, b, c$, prove the inequality
$$\frac{(a^2- b^2)^3 + (b^2-c^2)^3+(c^2-a^2)^3}{(a- b)^3 + (b-c)^3+(c-a)^3}> 8abc$$
2017 Junior Balkan Team Selection Tests - Romania, 1
If $a, b, c \in [-1, 1]$ satisfy $a + b + c + abc = 0$, prove that $a^2 + b^2 + c^2 \ge 3(a + b + c)$ .
When does the equality hold?
2012 Iran MO (3rd Round), 2
Suppose $N\in \mathbb N$ is not a perfect square, hence we know that the continued fraction of $\sqrt{N}$ is of the form $\sqrt{N}=[a_0,\overline{a_1,a_2,...,a_n}]$. If $a_1\neq 1$ prove that $a_i\le 2a_0$.