This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

MathLinks Contest 1st, 3

Tags: inequalities
Prove that if the positive reals $a, b, c$ have sum $1$ then the following inequality holds $$(ab)^{ \frac54} + (bc)^{\frac54} + (ca)^{\frac54} < \frac14 .$$

2010 Contests, 2

Let $ a\geq 2$ be a real number; with the roots $ x_{1}$ and $ x_{2}$ of the equation $ x^2\minus{}ax\plus{}1\equal{}0$ we build the sequence with $ S_{n}\equal{}x_{1}^n \plus{} x_{2}^n$. [b]a)[/b]Prove that the sequence $ \frac{S_{n}}{S_{n\plus{}1}}$, where $ n$ takes value from $ 1$ up to infinity, is strictly non increasing. [b]b)[/b]Find all value of $ a$ for the which this inequality hold for all natural values of $ n$ $ \frac{S_{1}}{S_{2}}\plus{}\cdots \plus{}\frac{S_{n}}{S_{n\plus{}1}}>n\minus{}1$

2018 Junior Balkan Team Selection Tests - Romania, 2

If $a, b, c$ are positive real numbers, prove that $$\frac{a}{\sqrt{(a + 2b)^3}}+\frac{b}{\sqrt{(b + 2c)^3}} +\frac{c} {\sqrt{(c + 2a)^3}} \ge \frac{1}{\sqrt{a + b + c}}$$ Alexandru Mihalcu

2008 National Olympiad First Round, 29

$[AB]$ and $[CD]$ are not parallel in the convex quadrilateral $ABCD$. Let $E$ and $F$ be the midpoints of $[AD]$ and $[BC]$, respectively. If $|CD|=12$, $|AB|=22$, and $|EF|=x$, what is the sum of integer values of $x$? $ \textbf{(A)}\ 110 \qquad\textbf{(B)}\ 114 \qquad\textbf{(C)}\ 118 \qquad\textbf{(D)}\ 121 \qquad\textbf{(E)}\ \text{None of the above} $

2001 China Team Selection Test, 2

Let ${a_n}$ be a non-increasing sequence of positive numbers. Prove that if for $n \ge 2001$, $na_{n} \le 1$, then for any positive integer $m \ge 2001$ and $x \in \mathbb{R}$, the following inequality holds: $\left | \sum_{k=2001}^{m} a_{k} \sin kx \right | \le 1 + \pi$

Kvant 2025, M2836

The heights $BD$ and $CE$ of the acute-angled triangle $ABC$ intersect at point $H$, the heights of the triangle $ADE$ intersect at point $F$, point $M$ is the midpoint of side $BC$. Prove that $BH + CH \geqslant 2 FM$. [i]A. Kuznetsov[/i]

2019 Brazil Team Selection Test, 3

Let $n \geq 2$ be an integer and $x_1, x_2, \ldots, x_n$ be positive real numbers such that $\sum_{i=1}^nx_i=1$. Show that $$\bigg(\sum_{i=1}^n\frac{1}{1-x_i}\bigg)\bigg(\sum_{1 \leq i < j \leq n}x_ix_j\bigg) \leq \frac{n}{2}.$$

2011 German National Olympiad, 1

Prove for each non-negative integer $n$ and real number $x$ the inequality \[ \sin{x} \cdot(n \sin{x}-\sin{nx}) \geq 0 \]

VMEO III 2006 Shortlist, N9

Assume the $m$ is a given integer greater than $ 1$. Find the largest number $C$ such that for all $n \in N$ we have $$\sum_{1\le k \le m ,\,\, (k,m)=1}\frac{1}{k}\ge C \sum_{k=1}^{m}\frac{1}{k}$$

PEN P Problems, 12

The positive function $p(n)$ is defined as the number of ways that the positive integer $n$ can be written as a sum of positive integers. Show that, for all positive integers $n \ge 2$, \[2^{\lfloor \sqrt{n}\rfloor}< p(n) < n^{3 \lfloor\sqrt{n}\rfloor }.\]

2021 Science ON grade VIII, 4

Consider positive real numbers $x,y,z$. Prove the inequality $$\frac 1x+\frac 1y+\frac 1z+\frac{9}{x+y+z}\ge 3\left (\left (\frac{1}{2x+y}+\frac{1}{x+2y}\right )+\left (\frac{1}{2y+z}+\frac{1}{y+2z}\right )+\left (\frac{1}{2z+x}+\frac{1}{x+2z}\right )\right ).$$ [i] (Vlad Robu \& Sergiu Novac)[/i]

1987 Traian Lălescu, 2.2

Let $ f:[0,1]\longrightarrow\mathbb{R} $ a continuous function. Prove that $$ \int_0^1 f^2\left( x^2 \right) dx\ge \frac{3}{4}\left( \int_0^1 f(x)dx \right)^2 , $$ and find the circumstances under which equality happens.

2012 Albania Team Selection Test, 1

Tags: inequalities
Find the greatest value of the expression \[ \frac{1}{x^2-4x+9}+\frac{1}{y^2-4y+9}+\frac{1}{z^2-4z+9} \] where $x$, $y$, $z$ are nonnegative real numbers such that $x+y+z=1$.

1987 All Soviet Union Mathematical Olympiad, 452

The positive numbers $a,b,c,A,B,C$ satisfy a condition $$a + A = b + B = c + C = k$$ Prove that $$aB + bC + cA \le k^2$$

2004 Romania National Olympiad, 3

Let $n>2,n \in \mathbb{N}$ and $a>0,a \in \mathbb{R}$ such that $2^a + \log_2 a = n^2$. Prove that: \[ 2 \cdot \log_2 n>a>2 \cdot \log_2 n -\frac{1}{n} . \] [i]Radu Gologan[/i]

2013 ELMO Shortlist, 5

Let $a,b,c$ be positive reals satisfying $a+b+c = \sqrt[7]{a} + \sqrt[7]{b} + \sqrt[7]{c}$. Prove that $a^a b^b c^c \ge 1$. [i]Proposed by Evan Chen[/i]

2014 Peru IMO TST, 15

Let $n$ be a positive integer, and consider a sequence $a_1 , a_2 , \dotsc , a_n $ of positive integers. Extend it periodically to an infinite sequence $a_1 , a_2 , \dotsc $ by defining $a_{n+i} = a_i $ for all $i \ge 1$. If \[a_1 \le a_2 \le \dots \le a_n \le a_1 +n \] and \[a_{a_i } \le n+i-1 \quad\text{for}\quad i=1,2,\dotsc, n, \] prove that \[a_1 + \dots +a_n \le n^2. \]

1959 Polish MO Finals, 1

Prove that for any numbers $ a $ and $ b $ the inequality holds $$ \frac{a+b}{2} \cdot \frac{a^2+b^2}{2} \cdot \frac{a^3+b^3}{2} \leq \frac{a^6+b^6}{2}.$$

2005 Romania Team Selection Test, 3

Let $P$ be a polygon (not necessarily convex) with $n$ vertices, such that all its sides and diagonals are less or equal with 1 in length. Prove that the area of the polygon is less than $\dfrac {\sqrt 3} 2$.

1964 Putnam, A5

Tags: inequalities
Prove that there exists a constant $K$ such that the following inequality holds for any sequence of positive numbers $a_1 , a_2 , a_3 , \ldots:$ $$\sum_{n=1}^{\infty} \frac{n}{a_1 + a_2 +\ldots + a_n } \leq K \sum_{n=1}^{\infty} \frac{1}{a_{n}}.$$

1988 All Soviet Union Mathematical Olympiad, 477

What is the minimal value of $\frac{b}{c + d} + \frac{c}{a + b}$ for positive real numbers $b$ and $c$ and non-negative real numbers $a$ and $d$ such that $b + c\ge a + d$?

2008 Romania National Olympiad, 2

Let $ f: [0,1]\to\mathbb R$ be a derivable function, with a continuous derivative $ f'$ on $ [0,1]$. Prove that if $ f\left( \frac 12\right) \equal{} 0$, then \[ \int^1_0 \left( f'(x) \right)^2 dx \geq 12 \left( \int^1_0 f(x) dx \right)^2.\]

2010 China Team Selection Test, 1

Assume real numbers $a_i,b_i\,(i=0,1,\cdots,2n)$ satisfy the following conditions: (1) for $i=0,1,\cdots,2n-1$, we have $a_i+a_{i+1}\geq 0$; (2) for $j=0,1,\cdots,n-1$, we have $a_{2j+1}\leq 0$; (2) for any integer $p,q$, $0\leq p\leq q\leq n$, we have $\sum_{k=2p}^{2q}b_k>0$. Prove that $\sum_{i=0}^{2n}(-1)^i a_i b_i\geq 0$, and determine when the equality holds.

2022 Auckland Mathematical Olympiad, 8

Find the least value of the expression $(x+y)(y+z)$, under the conditionthat $x,y,z$ are positive numbers satisfying the equation $xyz(x + y + z) = 1$.

1961 AMC 12/AHSME, 38

Triangle $ABC$ is inscribed in a semicircle of radius $r$ so that its base $AB$ coincides with diameter $AB$. Point $C$ does not coincide with either $A$ or $B$. Let $s=AC+BC$. Then, for all permissible positions of $C$: $ \textbf{(A)}\ s^2\le8r^2$ $\qquad\textbf{(B)}\ s^2=8r^2$ $\qquad\textbf{(C)}\ s^2 \ge 8r^2$ ${\qquad\textbf{(D)}\ s^2\le4r^2 }$ ${\qquad\textbf{(E)}\ x^2=4r^2 } $