This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2008 Grigore Moisil Intercounty, 2

Let $ n\in \mathbb{N^*}$ and $ f: [0,1]\rightarrow \mathbb{R}$ a continuos function with the prop. $ \int_{0}^{1}(1\minus{}x^n)f(x)dx\equal{}0$. Prove that $ \int_{0}^{1}f^2(x)dx \geq 2(n\plus{}1)\left(\int_{0}^{1}f(x)dx\right)^2$

2002 Hong kong National Olympiad, 3

Tags: inequalities
Let $a\geq b\geq c\geq 0$ are real numbers such that $a+b+c=3$. Prove that $ab^{2}+bc^{2}+ca^{2}\leq\frac{27}{8}$ and find cases of equality.

2018 China Team Selection Test, 3

Prove that there exists a constant $C>0$ such that $$H(a_1)+H(a_2)+\cdots+H(a_m)\leq C\sqrt{\sum_{i=1}^{m}i a_i}$$ holds for arbitrary positive integer $m$ and any $m$ positive integer $a_1,a_2,\cdots,a_m$, where $$H(n)=\sum_{k=1}^{n}\frac{1}{k}.$$

2010 Contests, 2

Find all integers $n$, $n \ge 1$, such that $n \cdot 2^{n+1}+1$ is a perfect square.

2023 Junior Macedonian Mathematical Olympiad, 3

Let $a$, $b$ and $c$ be positive real numbers such that $a+b+c=1$. Prove the inequality $$ \left ( \frac{1+a}{b}+2 \right ) \left ( \frac{1+b}{c}+2 \right ) \left ( \frac{1+c}{a}+2 \right )\geq 216.$$ When does equality hold? [i]Authored by Anastasija Trajanova[/i]

VMEO IV 2015, 12.1

Find the largest constant $k$ such that the inequality $$a^2+b^2+c^2-ab-bc-ca \ge k \left|\frac{a^3-b^3}{a+b}+\frac{b^3-c^3}{b+c}+\frac{c^3-a^3}{c+a}\right|$$ holds for any for non negative real numbers $a,b,c$ with $(a+b)(b+c)(c+a)>0$.

1997 IMO Shortlist, 21

Let $ x_1$, $ x_2$, $ \ldots$, $ x_n$ be real numbers satisfying the conditions: \[ \left\{\begin{array}{cccc} |x_1 \plus{} x_2 \plus{} \cdots \plus{} x_n | & \equal{} & 1 & \ \\ |x_i| & \leq & \displaystyle \frac {n \plus{} 1}{2} & \ \textrm{ for }i \equal{} 1, 2, \ldots , n. \end{array} \right. \] Show that there exists a permutation $ y_1$, $ y_2$, $ \ldots$, $ y_n$ of $ x_1$, $ x_2$, $ \ldots$, $ x_n$ such that \[ | y_1 \plus{} 2 y_2 \plus{} \cdots \plus{} n y_n | \leq \frac {n \plus{} 1}{2}. \]

1995 IMO Shortlist, 7

Let ABCD be a convex quadrilateral and O a point inside it. Let the parallels to the lines BC, AB, DA, CD through the point O meet the sides AB, BC, CD, DA of the quadrilateral ABCD at the points E, F, G, H, respectively. Then, prove that $ \sqrt {\left|AHOE\right|} \plus{} \sqrt {\left|CFOG\right|}\leq\sqrt {\left|ABCD\right|}$, where $ \left|P_1P_2...P_n\right|$ is an abbreviation for the non-directed area of an arbitrary polygon $ P_1P_2...P_n$.

2000 Baltic Way, 12

Let $x_1,x_2,\ldots x_n$ be positive integers such that no one of them is an initial fragment of any other (for example, $12$ is an initial fragment of $\underline{12},\underline{12}5$ and $\underline{12}405$). Prove that \[\frac{1}{x_1}+\frac{1}{x_2}+\ldots+\frac{1}{x_n}<3. \]

1988 Swedish Mathematical Competition, 5

Show that there exists a constant $a > 1$ such that, for any positive integers $m$ and $n$, $\frac{m}{n} < \sqrt7$ implies that $$7-\frac{m^2}{n^2} \ge \frac{a}{n^2} .$$

2008 Junior Balkan Team Selection Tests - Romania, 2

Let $ m,n$ be two natural nonzero numbers and sets $ A \equal{} \{ 1,2,...,n\}, B \equal{} \{1,2,...,m\}$. We say that subset $ S$ of Cartesian product $ A \times B$ has property $ (j)$ if $ (a \minus{} x)(b \minus{} y)\le 0$ for each pairs $ (a,b),(x,y) \in S$. Prove that every set $ S$ with propery $ (j)$ has at most $ m \plus{} n \minus{} 1$ elements. [color=#FF0000]The statement was edited, in order to reflect the actual problem asked. The sign of the inequality was inadvertently reversed into $ (a \minus{} x)(b \minus{} y)\ge 0$, and that accounts for the following two posts.[/color]

1964 Putnam, A1

Given $6$ points in a plane, assume that each two of them are connected by a segment. Let $D$ be the length of the longest, and $d$ the length of the shortest of these segments. Prove that $\frac Dd\ge\sqrt3$.

2018 Greece National Olympiad, 4

In the plane, there are $n$ points ($n\ge 4$) where no 3 of them are collinear. Let $A(n)$ be the number of parallelograms whose vertices are those points with area $1$. Prove the following inequality: $A(n)\leq \frac{n^2-3n}{4}$ for all $n\ge 4$

2016 Saudi Arabia GMO TST, 2

Let $n \ge 1$ be a fixed positive integer. We consider all the sets $S$ which consist of sub-sequences of the sequence $0, 1,2, ..., n$ satisfying the following conditions: i) If $(a_i)_{i=0}^k$ belongs to $S$, then $a_0 = 0$, $a_k = n$ and $a_{i+1} - a_i \le 2$ for all $0 \le i \le k - 1$. ii) If $(a_i)_{i=0}^k$ and $(b_j)^h_{j=0}$ both belong to $S$, then there exist $0 \le i_0 \le k - 1$ and $0 \le j_0 \le h - 1$ such that $a_{i_0} = b_{j_0}$ and $a_{i_0+1} = b_{j_0+1}$. Find the maximum value of $|S|$ (among all the above-mentioned sets $S$).

2002 Iran Team Selection Test, 3

A "[i]2-line[/i]" is the area between two parallel lines. Length of "2-line" is distance of two parallel lines. We have covered unit circle with some "2-lines". Prove sum of lengths of "2-lines" is at least 2.

2010 Belarus Team Selection Test, 7.3

Prove that all positive real $x, y, z$ satisfy the inequality $x^y + y^z + z^x > 1$. (D. Bazylev)

2015 Romania National Olympiad, 2

The numbers $x, y, z, t, a$ and $b$ are positive integers, so that $xt-yz = 1$ and $$\frac{x}{y} \ge \frac{a}{b} \ge \frac{z}{t} .$$Prove that $$ab \le (x + z) (y +t)$$

2009 China Team Selection Test, 2

Given an integer $ n\ge 2$, find the maximal constant $ \lambda (n)$ having the following property: if a sequence of real numbers $ a_{0},a_{1},a_{2},\cdots,a_{n}$ satisfies $ 0 \equal{} a_{0}\le a_{1}\le a_{2}\le \cdots\le a_{n},$ and $ a_{i}\ge\frac {1}{2}(a_{i \plus{} 1} \plus{} a_{i \minus{} 1}),i \equal{} 1,2,\cdots,n \minus{} 1,$ then $ (\sum_{i \equal{} 1}^n{ia_{i}})^2\ge \lambda (n)\sum_{i \equal{} 1}^n{a_{i}^2}.$

2014 Hanoi Open Mathematics Competitions, 11

Determine all real numbers $a, b, c, d$ such that the polynomial $f(x) = ax^3 +bx^2 + cx + d$ satis fies simultaneously the folloving conditions $\begin {cases} |f(x)| \le 1 \,for \, |x| \le 1 \\ f(2) = 26 \end {cases}$

2018 Bulgaria JBMO TST, Source

Tags: inequalities
For real numbers $a$ and $b$, define $$f(a,b) = \sqrt{a^2+b^2+26a+86b+2018}.$$ Find the smallest possible value of the expression $$f(a, b) + f (a,-b) + f(-a, b) + f (-a, -b).$$

2013 NZMOC Camp Selection Problems, 12

For a positive integer $n$, let $p(n)$ denote the largest prime divisor of $n$. Show that there exist infinitely many positive integers m such that $p(m-1) < p(m) < p(m + 1)$.

2014 Federal Competition For Advanced Students, P2, 3

(i) For which triangles with side lengths $a, b$ and $c$ apply besides the triangle inequalities $a + b> c, b + c> a$ and $c + a> b$ also the inequalities $a^2 + b^2> c^2, b^2 + c^2> a^2$ and $a^2 + c^2> b^2$ ? (ii) For which triangles with side lengths $a, b$ and $c$ apply besides the triangle inequalities $a + b> c, b + c> a$ and $c + a> b$ also for all positive natural $n$ the inequalities $a^n + b^n> c^n, b^n + c^n> a^n$ and $a^n + c^n> b^n$ ?

2002 IMO, 4

Let $n\geq2$ be a positive integer, with divisors $1=d_1<d_2<\,\ldots<d_k=n$. Prove that $d_1d_2+d_2d_3+\,\ldots\,+d_{k-1}d_k$ is always less than $n^2$, and determine when it is a divisor of $n^2$.

2016 Junior Regional Olympiad - FBH, 1

Tags: inequalities
If $a>b>c$ are real numbers prove that $$\frac{1}{a-b}+\frac{1}{b-c}>\frac{2}{a-c}$$

2020 Jozsef Wildt International Math Competition, W39

Tags: inequalities
Prove that: i) $$\sum_{k=1}^{n-1}(1+\ln k)\le n^2-n+1$$ ii) $$\sum_{k=1}^{n-1}\sqrt{\ln k}\le\frac{n^2-n+1}2$$ [i]Proposed by Laurențiu Modan[/i]