This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2011 Akdeniz University MO, 3

For all $x \geq 2$, $y \geq 2$ real numbers, prove that $$x(\frac{4x}{y-1}+\frac{1}{2y+x})+y(\frac{y}{6x-9}+\frac{1}{2x+y}) > \frac{26}{3}$$

2022-IMOC, A2

Tags: inequalities
Given positive integer $n>2,$ consider real numbers $a_1,a_2,\dots, a_n$ satisfying $a^{2}_1+a^2_2+\dots a^2_n=1.$ Find the maximal value of $$|a_1-a_2|+|a_2-a_3| +\dots +|a_n-a_1|.$$ [i]Proposed by ltf0501[/i]

2023 Romanian Master of Mathematics, 4

An acute triangle $ABC$ is given and $H$ and $O$ be its orthocenter and circumcenter respectively. Let $K$ be the midpoint of $AH$ and $\ell$ be a line through $O. $ Let $P$ and $Q$ be the projections of $B$ and $C$ on $\ell. $ Prove that$$KP+KQ\ge BC$$

2011 Turkey MO (2nd round), 3

Tags: inequalities
$x,y,z$ positive real numbers such that $xyz=1$ Prove that: $\frac{1}{x+y^{20}+z^{11}}+\frac{1}{y+z^{20}+x^{11}}+\frac{1}{z+x^{20}+y^{11}}\leq1$

2005 Brazil National Olympiad, 2

Determine the smallest real number $C$ such that the inequality \[ C(x_1^{2005} +x_2^{2005} + \cdots + x_5^{2005}) \geq x_1x_2x_3x_4x_5(x_1^{125} + x_2^{125}+ \cdots + x_5^{125})^{16} \] holds for all positive real numbers $x_1,x_2,x_3,x_4,x_5$.

2019 Saudi Arabia Pre-TST + Training Tests, 5.3

Let $x, y, z, a,b, c$ are pairwise different integers from the set $\{1,2,3, 4,5,6\}$. Find the smallest possible value for expression $xyz + abc - ax - by - cz$.

Russian TST 2016, P2

Let $x,y,z{}$ be positive real numbers. Prove that \[(xy+yz+zx)\left(\frac{1}{x^2+y^2}+\frac{1}{y^2+z^2}+\frac{1}{z^2+x^2}\right)>\frac{5}{2}.\]

2009 Today's Calculation Of Integral, 488

For $ 0\leq x <\frac{\pi}{2}$, prove the following inequality. $ x\plus{}\ln (\cos x)\plus{}\int_0^1 \frac{t}{1\plus{}t^2}\ dt\leq \frac{\pi}{4}$

2006 Bosnia and Herzegovina Team Selection Test, 3

Prove that for every positive integer $n$ holds inequality $\{n\sqrt{7}\}>\frac{3\sqrt{7}}{14n}$, where $\{x\}$ is fractional part of $x$.

1996 Baltic Way, 15

Tags: inequalities
For which positive real numbers $a,b$ does the inequality \[x_1x_2+x_2x_3+\ldots x_{n-1}x_n+x_nx_1\ge x_1^ax_2^bx_3^a+ x_2^ax_3^bx_4^a+\ldots +x_n^ax_1^bx_2^a\] hold for all integers $n>2$ and positive real numbers $x_1,\ldots ,x_n$?

MathLinks Contest 4th, 7.1

Let $a, b, c, d$ be positive reals such that $abcd = 1$. Prove that $$\frac{1}{a(b + 1)} +\frac{1}{b(c + 1)} +\frac{1}{c(d + 1)} +\frac{1}{d(a + 1)} \ge 2.$$

Russian TST 2018, P3

Tags: inequalities
Let $a,b,c>0.$ Prove that $\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a} \ge \frac{1}{\sqrt{2a^2+2bc}}+\frac{1}{\sqrt{2b^2+2ca}}+\frac{1}{\sqrt{2c^2+2ab}}$

2014 Brazil Team Selection Test, 4

Let $n$ be a positive integer, and consider a sequence $a_1 , a_2 , \dotsc , a_n $ of positive integers. Extend it periodically to an infinite sequence $a_1 , a_2 , \dotsc $ by defining $a_{n+i} = a_i $ for all $i \ge 1$. If \[a_1 \le a_2 \le \dots \le a_n \le a_1 +n \] and \[a_{a_i } \le n+i-1 \quad\text{for}\quad i=1,2,\dotsc, n, \] prove that \[a_1 + \dots +a_n \le n^2. \]

2006 Belarusian National Olympiad, 1

Let $\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$ be unit vectors in $R^3$. Prove that $$\sqrt{1-\overrightarrow{a}\cdot\overrightarrow{b}}\le \sqrt{1-\overrightarrow{a}\cdot\overrightarrow{c}}+\sqrt{1-\overrightarrow{c}\cdot\overrightarrow{b}}$$ (A.Mirotin)

2007 District Olympiad, 4

[b]a)[/b] Let $ \bold {u,v,w,} $ be three coplanar vectors of absolute value $ 1. $ Show that there exist $ \varepsilon_1 ,\varepsilon_2, \varepsilon_3\in \{ \pm 1\} $ such that $$ \big| \varepsilon_1\bold u +\varepsilon_2\bold v +\varepsilon_3\bold w \big|\le 1. $$ [b]b)[/b] Give an example of three vectors such that the inequality above does not work for any sclaras from $ \{ \pm 1\} . $

2022 Kyiv City MO Round 1, Problem 4

Tags: inequalities
For any nonnegative reals $x, y$ show the inequality $$x^2y^2 + x^2y + xy^2 \le x^4y + x + y^4$$.

2014 Saudi Arabia Pre-TST, 1.1

Let $a_1, a_2,...,a_{2n}$ be positive real numbers such that $a_i + a_{n+i} = 1$, for all $i = 1,...,n$. Prove that there exist two different integers $1 \le j, k \le 2n$ for which $$\sqrt{a^2_j-a^2_k} < \frac{1}{\sqrt{n} +\sqrt{n - 1}}$$

2014 Romania Team Selection Test, 3

Tags: inequalities
Determine the smallest real constant $c$ such that \[\sum_{k=1}^{n}\left ( \frac{1}{k}\sum_{j=1}^{k}x_j \right )^2\leq c\sum_{k=1}^{n}x_k^2\] for all positive integers $n$ and all positive real numbers $x_1,\cdots ,x_n$.

2017 Iran Team Selection Test, 1

Let $a,b,c,d$ be positive real numbers with $a+b+c+d=2$. Prove the following inequality: $$\frac{(a+c)^{2}}{ad+bc}+\frac{(b+d)^{2}}{ac+bd}+4\geq 4\left ( \frac{a+b+1}{c+d+1}+\frac{c+d+1}{a+b+1} \right).$$ [i]Proposed by Mohammad Jafari[/i]

2007 Ukraine Team Selection Test, 1

Tags: inequalities
$\{a,b,c\}\subset\left(\frac{1}{\sqrt6},+\infty\right)$ such that $a^{2}+b^{2}+c^{2}=1.$ Prove that $\frac{1+a^{2}}{\sqrt{2a^{2}+3ab-c^{2}}}+\frac{1+b^{2}}{\sqrt{2b^{2}+3bc-a^{2}}}+\frac{1+c^{2}}{\sqrt{2c^{2}+3ca-b^{2}}}\ge2(a+b+c).$

2015 Turkmenistan National Math Olympiad, 4

Find the max and minimum without using dervivate: $\sqrt{x} +4 \cdot \sqrt{\frac{1}{2} - x}$

2021 IMO Shortlist, A7

Let $n\geqslant 1$ be an integer, and let $x_0,x_1,\ldots,x_{n+1}$ be $n+2$ non-negative real numbers that satisfy $x_ix_{i+1}-x_{i-1}^2\geqslant 1$ for all $i=1,2,\ldots,n.$ Show that \[x_0+x_1+\cdots+x_n+x_{n+1}>\bigg(\frac{2n}{3}\bigg)^{3/2}.\][i]Pakawut Jiradilok and Wijit Yangjit, Thailand[/i]

2005 India IMO Training Camp, 3

For real numbers $a,b,c,d$ not all equal to $0$ , define a real function $f(x) = a +b\cos{2x} + c\sin{5x} +d \cos{8x}$. Suppose $f(t) = 4a$ for some real $t$. prove that there exist a real number $s$ s.t. $f(s)<0$

2017 China Team Selection Test, 2

Let $x>1$ ,$n$ be positive integer. Prove that$$\sum_{k=1}^{n}\frac{\{kx \}}{[kx]}<\sum_{k=1}^{n}\frac{1}{2k-1}$$ Where $[kx ]$ be the integer part of $kx$ ,$\{kx \}$ be the decimal part of $kx$.

2012 Bogdan Stan, 4

Let $ D $ be a point on the side $ BC $ (excluding its endpoints) of a triangle $ ABC $ with $ AB>AC, $ such that $ \frac{\angle BAD}{\angle BAC} $ is a rational number. Prove the following: $$ \frac{\angle BAD}{\angle BAC} < \frac{AB\cdot AC - AC\cdot AD}{AB\cdot AD - AC\cdot AD} $$