This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1991 Iran MO (2nd round), 2

Triangle $ABC$ is inscribed in circle $C.$ The bisectors of the angles $A,B$ and $C$ meet the circle $C$ again at the points $A', B', C'$. Let $I$ be the incenter of $ABC,$ prove that \[\frac{IA'}{IA} + \frac{IB'}{IB}+\frac{IC'}{IC} \geq 3\]\[, IA'+IB'+IC' \geq IA+IB+IC\]

2013 Bosnia Herzegovina Team Selection Test, 4

Find all primes $p,q$ such that $p$ divides $30q-1$ and $q$ divides $30p-1$.

2010 Korea Junior Math Olympiad, 5

If reals $x, y, z $ satises $tan x + tan y + tan z = 2$ and $0 < x, y,z < \frac{\pi}{2}.$ Prove that $$sin^2 x + sin^2 y + sin^2 z < 1.$$

2013 Saudi Arabia GMO TST, 2

For positive real numbers $a, b$ and $c$, prove that $$\frac{a^3}{a^2 + ab + b^2} +\frac{b^3}{b^2 + bc + c^2} +\frac{c^3}{ c^2 + ca + a^2} \ge\frac{ a + b + c}{3}$$

1948 Moscow Mathematical Olympiad, 149

Let $R$ and $r$ be the radii of the circles circumscribed and inscribed, respectively, in a triangle. Prove that $R \ge 2r$, and that $R = 2r$ only for an equilateral triangle.

1983 All Soviet Union Mathematical Olympiad, 365

One side of the rectangle is $1$ cm. It is known that the rectangle can be divided by two orthogonal lines onto four rectangles, and each of the smaller rectangles has the area not less than $1$ square centimetre, and one of them is not less than $2$ square centimetres. What is the least possible length of another side of big rectangle?

2020 DMO Stage 1, 3.

Tags: inequalities
[b]Q .[/b]Prove that $$\left(\sum_\text{cyc}(a-x)^4\right)\ +\ 2\left(\sum_\text{sym}x^3y\right)\ +\ 4\left(\sum_\text{cyc}x^2y^2\right)\ +\ 8xyza \geqslant \left(\sum_\text{cyc}(a-x)^2(a^2-x^2)\right)$$where $a=x+y+z$ and $x,y,z \in \mathbb{R}.$ [i]Proposed by srijonrick[/i]

2015 Stars Of Mathematics, 1

Tags: inequalities
Let $a,b,c\ge 0$ be three real numbers such that $$ab+bc+ca+2abc=1.$$ Prove that $\sqrt{a}+\sqrt{b}+\sqrt{c}\ge 2$ and determine equality cases.

2019 VJIMC, 4

Determine the largest constant $K\geq 0$ such that $$\frac{a^a(b^2+c^2)}{(a^a-1)^2}+\frac{b^b(c^2+a^2)}{(b^b-1)^2}+\frac{c^c(a^2+b^2)}{(c^c-1)^2}\geq K\left (\frac{a+b+c}{abc-1}\right)^2$$ holds for all positive real numbers $a,b,c$ such that $ab+bc+ca=abc$. [i]Proposed by Orif Ibrogimov (Czech Technical University of Prague).[/i]

PEN C Problems, 4

Let $M$ be an integer, and let $p$ be a prime with $p>25$. Show that the set $\{M, M+1, \cdots, M+ 3\lfloor \sqrt{p} \rfloor -1\}$ contains a quadratic non-residue to modulus $p$.

II Soros Olympiad 1995 - 96 (Russia), 10.1

Find the largest and smallest value of the function $$y=\sqrt{7+5\cos x}-\cos x.$$

2010 AMC 12/AHSME, 22

Let $ ABCD$ be a cyclic quadrilateral. The side lengths of $ ABCD$ are distinct integers less than $ 15$ such that $ BC\cdot CD\equal{}AB\cdot DA$. What is the largest possible value of $ BD$? $ \textbf{(A)}\ \sqrt{\frac{325}{2}} \qquad \textbf{(B)}\ \sqrt{185} \qquad \textbf{(C)}\ \sqrt{\frac{389}{2}} \qquad \textbf{(D)}\ \sqrt{\frac{425}{2}} \qquad \textbf{(E)}\ \sqrt{\frac{533}{2}}$

2021 China Team Selection Test, 4

Proof that $$ \sum_{m=1}^n5^{\omega (m)} \le \sum_{k=1}^n\lfloor \frac{n}{k} \rfloor \tau (k)^2 \le \sum_{m=1}^n5^{\Omega (m)} .$$

2017 ELMO Problems, 6

Find all functions $f:\mathbb{R}\to \mathbb{R}$ such that for all real numbers $a,b,$ and $c$: (i) If $a+b+c\ge 0$ then $f(a^3)+f(b^3)+f(c^3)\ge 3f(abc).$ (ii) If $a+b+c\le 0$ then $f(a^3)+f(b^3)+f(c^3)\le 3f(abc).$ [i]Proposed by Ashwin Sah[/i]

2010 Today's Calculation Of Integral, 645

Prove the following inequality. \[\int_{-1}^1 \frac{e^x+e^{-x}}{e^{e^{e^x}}}dx<e-\frac{1}{e}\] Own

2018 Belarusian National Olympiad, 9.2

For every integer $n\geqslant2$ prove the inequality $$ \frac{1}{2!}+\frac{2}{3!}+\ldots+\frac{2^{n-2}}{n!}\leqslant\frac{3}{2}, $$ where $k!=1\cdot2\cdot\ldots\cdot k$.

JOM 2015 Shortlist, G4

Tags: inequalities
Let $ ABC $ be a triangle and let $ AD, BE, CF $ be cevians of the triangle which are concurrent at $ G $. Prove that if $ CF \cdot BE \ge AF \cdot EC + AE \cdot BF + BC \cdot FE $ then $ AG \le GD $.

1970 Swedish Mathematical Competition, 6

Show that $\frac{(n - m)!}{m!} \le \left(\frac{n}{2} + \frac{1}{2}\right)^{n-2m}$ for positive integers $m, n$ with $2m \le n$.

2015 Saudi Arabia IMO TST, 3

Let $a_1, a_2, ...,a_n$ be positive real numbers such that $$a_1 + a_2 + ... + a_n = a_1^2 + a_2^2 + ... + a_n^2$$ Prove that $$\sum_{1\le i<j\le n} a_ia_j(1 - a_ia_j) \ge 0$$ Võ Quốc Bá Cẩn.

2001 Saint Petersburg Mathematical Olympiad, 10.1

Quadratic trinomials $f$ and $g$ with integer coefficients obtain only positive values and the inequality $\dfrac{f(x)}{g(x)}\geq \sqrt{2}$ is true $\forall x\in\mathbb{R}$. Prove that $\dfrac{f(x)}{g(x)}>\sqrt{2}$ is true $\forall x\in\mathbb{R}$ [I]Proposed by A. Khrabrov[/i]

1966 IMO Longlists, 26

Prove the inequality [b]a.)[/b] $ \left( a_{1}+a_{2}+...+a_{k}\right) ^{2}\leq k\left( a_{1}^{2}+a_{2}^{2}+...+a_{k}^{2}\right) , $ where $k\geq 1$ is a natural number and $a_{1},$ $a_{2},$ $...,$ $a_{k}$ are arbitrary real numbers. [b]b.)[/b] Using the inequality (1), show that if the real numbers $a_{1},$ $a_{2},$ $...,$ $a_{n}$ satisfy the inequality \[ a_{1}+a_{2}+...+a_{n}\geq \sqrt{\left( n-1\right) \left( a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\right) }, \] then all of these numbers $a_{1},$ $a_{2},$ $\ldots,$ $a_{n}$ are non-negative.

2005 MOP Homework, 5

Let $ABCD$ be a cyclic quadrilateral such that $AB \cdot BC=2 \cdot AD \cdot DC$. Prove that its diagonals $AC$ and $BD$ satisfy the inequality $8BD^2 \le 9AC^2$. [color=#FF0000] Moderator says: Do not double post [url]http://www.artofproblemsolving.com/Forum/viewtopic.php?f=46&t=590175[/url][/color]

VMEO III 2006 Shortlist, N13

Prove the following two inequalities: 1) If $n > 49$, then exist positive integers $a, b > 1$ such that $a+b=n$ and $$\frac{\phi (a)}{a}+\frac{\phi (b)}{b}<1$$ 2) If $n > 4$, then exist integer integers $a, b > 1$ such that $a+b=n$ and $$\frac{\phi (a)}{a}+\frac{\phi (b)}{b}>1$$

2021 Macedonian Team Selection Test, Problem 1

Tags: inequalities
Let $k\geq 2$ be a natural number. Suppose that $a_1, a_2, \dots a_{2021}$ is a monotone decreasing sequence of non-negative numbers such that \[\sum_{i=n}^{2021}a_i\leq ka_n\] for all $n=1,2,\dots 2021$. Prove that $a_{2021}\leq 4(1-\frac{1}{k})^{2021}a_1$.

2024 Nepal TST, P2

Let $f: \mathbb{N} \to \mathbb{N}$ be an arbitrary function. Prove that there exist two positive integers $x$ and $y$ which satisfy $f(x+y) \le f(2x+f(y))$. [i](Proposed by David Anghel, Romania)[/i]