This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2006 Austria Beginners' Competition, 2

For which real numbers $a$ is the set of all solutions of the inequality $$(x^2 + ax + 4)(x^2 - 5x + 6) < 0$$ an interval?

1977 IMO Longlists, 7

Prove the following assertion: If $c_1,c_2,\ldots ,c_n\ (n\ge 2)$ are real numbers such that \[ (n-1)(c_1^2+c_2^2+\cdots +c_n^2)=(c_1+c_2+\cdots + c_n)^2,\] then either all these numbers are nonnegative or all these numbers are nonpositive.

1996 Tournament Of Towns, (510) 3

Prove that $$\frac{2}{2!}+\frac{7}{3!}+\frac{14}{4!}+\frac{23}{5!}+...+\frac{k^2-2}{k!}+...+\frac{9998}{100!}<3$$ where $n! = 1 \times 2 \times ... \times n.$ (V Senderov)

2018 Korea USCM, 8

Suppose a sequence of reals $\{a_n\}_{n\geq 0}$ satisfies $a_0 = 0$, $\frac{100}{101} <a_{100}<1$, and $$2a_n - a_{n-1} -a_{n+1} \leq 2 (1-a_n )^3$$ for every $n\geq 1$. (1) Define a sequence $b_n = a_n - \frac{n}{n+1}$. Prove that $b_n\leq b_{n+1}$ for any $n\geq 100$. (2) Determine whether infinite series $\sum_{n=1}^\infty \frac{a_n}{n^2}$ converges or diverges.

2019 Jozsef Wildt International Math Competition, W. 47

[list=1] [*] If $a$, $b$, $c$, $d > 0$, show inequality:$$\left(\tan^{-1}\left(\frac{ad-bc}{ac+bd}\right)\right)^2\geq 2\left(1-\frac{ac+bd}{\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}}\right)$$ [*] Calculate $$\lim \limits_{n \to \infty}n^{\alpha}\left(n- \sum \limits_{k=1}^n\frac{n^+k^2-k}{\sqrt{\left(n^2+k^2\right)\left(n^2+(k-1)^2\right)}}\right)$$where $\alpha \in \mathbb{R}$ [/list]

2011 Junior Balkan MO, 1

Tags: inequalities
Let $a,b,c$ be positive real numbers such that $abc = 1$. Prove that: $\displaystyle\prod(a^5+a^4+a^3+a^2+a+1)\geq 8(a^2+a+1)(b^2+b+1)(c^2+c+1)$

2020 Polish Junior MO Second Round, 4.

Let $ABC$ be such a triangle that $\sphericalangle BAC = 45^{\circ}$ and $ \sphericalangle ACB > 90^{\circ}.$ Show that $BC + (\sqrt{2} - 1)\cdot CA < AB.$

1981 Romania Team Selection Tests, 3.

Let $n>r\geqslant 3$ be two integers and $d$ be a positive integer such that $nd\geqslant \dbinom{n+r}{r+1}$. Show that \[(n-t)(d-t)>\dbinom{n-t+r}{r+1},\] for $t=1,2,\ldots,n-1$ [i]Vasile Brânzănescu[/i]

2000 India Regional Mathematical Olympiad, 3

Suppose $\{ x_n \}_{n\geq 1}$ is a sequence of positive real numbers such that $x_1 \geq x_2 \geq x_3 \ldots \geq x_n \ldots$, and for all $n$ \[ \frac{x_1}{1} + \frac{x_4}{2} + \frac{x_9}{3} + \ldots + \frac{x_{n^2}}{n} \leq 1 . \] Show that for all $k$ \[ \frac{x_1}{1} + \frac{x_2}{2} +\ldots + \frac{x_k}{k} \leq 3. \]

2012 Iran Team Selection Test, 2

Let $n$ be a natural number. Suppose $A$ and $B$ are two sets, each containing $n$ points in the plane, such that no three points of a set are collinear. Let $T(A)$ be the number of broken lines, each containing $n-1$ segments, and such that it doesn't intersect itself and its vertices are points of $A$. Define $T(B)$ similarly. If the points of $B$ are vertices of a convex $n$-gon (are in [i]convex position[/i]), but the points of $A$ are not, prove that $T(B)<T(A)$. [i]Proposed by Ali Khezeli[/i]

2022 IMO Shortlist, A4

Let $n \geqslant 3$ be an integer, and let $x_1,x_2,\ldots,x_n$ be real numbers in the interval $[0,1]$. Let $s=x_1+x_2+\ldots+x_n$, and assume that $s \geqslant 3$. Prove that there exist integers $i$ and $j$ with $1 \leqslant i<j \leqslant n$ such that \[2^{j-i}x_ix_j>2^{s-3}.\]

2015 Czech-Polish-Slovak Junior Match, 3

Real numbers $x, y$ satisfy the inequality $x^2 + y^2 \le 2$. Orove that $xy + 3 \ge 2x + 2y$

PEN Q Problems, 4

A prime $p$ has decimal digits $p_{n}p_{n-1} \cdots p_0$ with $p_{n}>1$. Show that the polynomial $p_{n}x^{n} + p_{n-1}x^{n-1}+\cdots+ p_{1}x + p_0$ cannot be represented as a product of two nonconstant polynomials with integer coefficients

1979 IMO Longlists, 9

The real numbers $\alpha_1 , \alpha_2, \alpha_3, \ldots, \alpha_n$ are positive. Let us denote by $h = \frac{n}{1/\alpha_1 + 1/\alpha_2 + \cdots + 1/\alpha_n}$ the harmonic mean, $g=\sqrt[n]{\alpha_1\alpha_2\cdots \alpha_n}$ the geometric mean, and $a=\frac{\alpha_1+\alpha_2+\cdots + \alpha_n}{n}$ the arithmetic mean. Prove that $h \leq g \leq a$, and that each of the equalities implies the other one.

2005 Spain Mathematical Olympiad, 2

Let $r,s,u,v$ be real numbers. Prove that: $$min\{r-s^2,s-u^2, u-v^2,v-r^2\}\le \frac{1}{4}$$

2006 Germany Team Selection Test, 2

In a room, there are $2005$ boxes, each of them containing one or several sorts of fruits, and of course an integer amount of each fruit. [b]a)[/b] Show that we can find $669$ boxes, which altogether contain at least a third of all apples and at least a third of all bananas. [b]b)[/b] Can we always find $669$ boxes, which altogether contain at least a third of all apples, at least a third of all bananas and at least a third of all pears?

2009 Indonesia TST, 2

Find the value of real parameter $ a$ such that $ 2$ is the smallest integer solution of \[ \frac{x\plus{}\log_2 (2^x\minus{}3a)}{1\plus{}\log_2 a} >2.\]

2022 Taiwan TST Round 3, A

Let $n\geq 2$ be an integer and let $a_1, a_2, \ldots, a_n$ be positive real numbers with sum $1$. Prove that $$\sum_{k=1}^n \frac{a_k}{1-a_k}(a_1+a_2+\cdots+a_{k-1})^2 < \frac{1}{3}.$$

2015 China Second Round Olympiad, 1

Tags: inequalities
Let $a,b,c$ be nonnegative real numbers.Prove that$$\frac{(a-bc)^2+(b-ca)^2+(c-ab)^2}{(a-b)^2+(b-c)^2+(c-a)^2}\geq\frac{1}{2}.$$

2009 Baltic Way, 15

A unit square is cut into $m$ quadrilaterals $Q_1,\ldots ,Q_m$. For each $i=1,\ldots ,m$ let $S_i$ be the sum of the squares of the four sides of $Q_i$. Prove that \[S_1+\ldots +S_m\ge 4\]

2014 Costa Rica - Final Round, 2

Let $p_1,p_2, p_3$ be positive numbers such that $p_1 + p_2 + p_3 = 1$. If $a_1 <a_2 <a_3$ and $b_1 <b_2 <b_3$ prove that $$(a_1p_1 + a_2p_2 + a_3p_3) (b_1p_1 + b_2p_2 + b_3p_3)\le (a_1b_1p_1 + a_2b_2p_2 + a_3b_3p_3)$$

2008 Iran MO (3rd Round), 4

Let $ x,y,z\in\mathbb R^{\plus{}}$ and $ x\plus{}y\plus{}z\equal{}3$. Prove that: \[ \frac{x^3}{y^3\plus{}8}\plus{}\frac{y^3}{z^3\plus{}8}\plus{}\frac{z^3}{x^3\plus{}8}\geq\frac19\plus{}\frac2{27}(xy\plus{}xz\plus{}yz)\]

2024 Belarusian National Olympiad, 11.7

Positive real numbers $a_1,a_2,\ldots, a_n$ satisfy the equation $$2a_1+a_2+\ldots+a_{n-1}=a_n+\frac{n^2-3n+2}{2}$$ For every positive integer $n \geq 3$ find the smallest possible value of the sum $$\frac{(a_1+1)^2}{a_2}+\ldots+\frac{(a_{n-1}+1)^2}{a_n}$$ [i]M. Zorka[/i]

2015 Vietnam National Olympiad, 2

If $a,b,c$ are nonnegative real numbers, then \[{ 3(a^2+b^2+c^2) \geq (a+b+c)(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})+(a-b)^2+(b-c)^2+(c-a)^2 \geq (a+b+c)^2.}\]

2007 Italy TST, 3

Let $p \geq 5$ be a prime. (a) Show that exists a prime $q \neq p$ such that $q| (p-1)^{p}+1$ (b) Factoring in prime numbers $(p-1)^{p}+1 = \prod_{i=1}^{n}p_{i}^{a_{i}}$ show that: \[\sum_{i=1}^{n}p_{i}a_{i}\geq \frac{p^{2}}2 \]