This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2007 Nicolae Coculescu, 2

Tags: inequalities
Let be $ a,b,c\in (0,\infty)$ such that $ 3abc\equal{}1$ . Show that : $ \frac{3a^5}{3a^5\plus{}2bc}\plus{}\frac{3b^5}{3b^5\plus{}2ca}\plus{}\frac{3c^5}{3c^5\plus{}2ab}\ge 1$

2015 BMT Spring, P1

Suppose $z_0,z_1,\ldots,z_{n-1}$ are complex numbers such that $z_k=e^{2k\pi i/n}$ for $k=0,1,2,\ldots,n-1$. Prove that for any complex number $z$, $\sum_{k=0}^{n-1}|z-z_k|\ge n$.

1973 All Soviet Union Mathematical Olympiad, 187

Prove that for every positive $x_1, x_2, x_3, x_4, x_5$ holds inequality: $$(x_1 + x_2 + x_3 + x_4 + x_5)^2 \ge 4(x_1x_2 + x_3x_4 + x_5x_1 + x_2x_3 + x_4x_5)$$

1994 Baltic Way, 2

Let $a_1,a_2,\ldots ,a_9$ be any non-negative numbers such that $a_1=a_9=0$ and at least one of the numbers is non-zero. Prove that for some $i$, $2\le i\le 8$, the inequality $a_{i-1}+a_{i+1}<2a_i$ holds. Will the statement remain true if we change the number $2$ in the last inequality to $1.9$?

Revenge EL(S)MO 2024, 1

Tags: inequalities
Let $o$, $r$, $g$, $t$, $n$, $i$, $z$, $e$, and $d$ be positive reals. Show that \[ \sqrt{(d+o+t+t+e+d)(o+r+z+i+n+g)} > \sqrt{ti} + \sqrt{go} + \sqrt[6]{orz}. \] when $d^2e \geq \tfrac{2}{1434}$. Proposed by [i]David Fox[/i]

2024 AIME, 15

Let $\mathcal{B}$ be the set of rectangular boxes that have volume $23$ and surface area $54$. Suppose $r$ is the least possible radius of a sphere that can fit any element of $\mathcal{B}$ inside it. Then $r^{2}$ can be expressed as $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.

2022 Romania Team Selection Test, 1

Tags: inequalities
Given are positive reals $x_1, x_2,..., x_n$ such that $\sum\frac {1}{1+x_i^2}=1$. Find the minimal value of the expression $\frac{\sum x_i}{\sum \frac{1}{x_i}}$ and find when it is achieved.

2003 SNSB Admission, 1

Show that if a holomorphic function $ f:\mathbb{C}\longrightarrow\mathbb{C} $ has the property that the modulus of any of its derivatives (of any order) is everywhere dominated by $ 1, $ then $ |f(z)|\le e^{|\text{Im} (z)|} , $ for all complex numbers $ z. $

2010 Brazil Team Selection Test, 4

Let $f$ be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers $x$ and $y$ such that \[f\left(x-f(y)\right)>yf(x)+x\] [i]Proposed by Igor Voronovich, Belarus[/i]

2008 China Team Selection Test, 1

Let $P$ be an arbitrary point inside triangle $ABC$, denote by $A_{1}$ (different from $P$) the second intersection of line $AP$ with the circumcircle of triangle $PBC$ and define $B_{1},C_{1}$ similarly. Prove that $\left(1 \plus{} 2\cdot\frac {PA}{PA_{1}}\right)\left(1 \plus{} 2\cdot\frac {PB}{PB_{1}}\right)\left(1 \plus{} 2\cdot\frac {PC}{PC_{1}}\right)\geq 8$.

1970 Vietnam National Olympiad, 1

Prove that for an arbitrary triangle $ABC$ : $sin \frac{A}{2} sin \frac{B}{2} sin \frac{C}{2} < \frac{1}{4}$.

1993 ITAMO, 5

Tags: inequalities
Prove the following inequality for any positive real numbers a,b,c not exceeding 1 $a^2b+b^2c+c^2a+1\ge a^2+b^2+c^2$

2007 IMC, 4

Let $ n > 1$ be an odd positive integer and $ A = (a_{ij})_{i, j = 1..n}$ be the $ n \times n$ matrix with \[ a_{ij}= \begin{cases}2 & \text{if }i = j \\ 1 & \text{if }i-j \equiv \pm 2 \pmod n \\ 0 & \text{otherwise}\end{cases}.\] Find $ \det A$.

2003 IMO, 5

Let $n$ be a positive integer and let $x_1\le x_2\le\cdots\le x_n$ be real numbers. Prove that \[ \left(\sum_{i,j=1}^{n}|x_i-x_j|\right)^2\le\frac{2(n^2-1)}{3}\sum_{i,j=1}^{n}(x_i-x_j)^2. \] Show that the equality holds if and only if $x_1, \ldots, x_n$ is an arithmetic sequence.

2021 Estonia Team Selection Test, 2

Positive real numbers $a, b, c$ satisfy $abc = 1$. Prove that $$\frac{a}{1+b}+\frac{b}{1+c}+\frac{c}{1+a} \ge \frac32$$

2003 India Regional Mathematical Olympiad, 3

Tags: inequalities
Let $a,b,c$ be three positive real numbers such that $a + b +c =1$ . prove that among the three numbers $a-ab, b - bc, c-ca$ there is one which is at most $\frac{1}{4}$ and there is one which is at least $\frac{2}{9}$.

1989 IMO Longlists, 12

Let $ P(x)$ be a polynomial such that the following inequalities are satisfied: \[ P(0) > 0;\]\[ P(1) > P(0);\]\[ P(2) > 2P(1) \minus{} P(0);\]\[ P(3) > 3P(2) \minus{} 3P(1) \plus{} P(0);\] and also for every natural number $ n,$ \[ P(n\plus{}4) > 4P(n\plus{}3) \minus{} 6P(n\plus{}2)\plus{}4P(n \plus{} 1) \minus{} P(n).\] Prove that for every positive natural number $ n,$ $ P(n)$ is positive.

1968 All Soviet Union Mathematical Olympiad, 100

The sequence $a_1,a_2,a_3,...$, is constructed according to the rule $$a_1=1, a_2=a_1+1/a_1, ... , a_{n+1}=a_n+1/a_n, ...$$ Prove that $a_{100} > 14$.

2005 USA Team Selection Test, 2

Let $A_{1}A_{2}A_{3}$ be an acute triangle, and let $O$ and $H$ be its circumcenter and orthocenter, respectively. For $1\leq i \leq 3$, points $P_{i}$ and $Q_{i}$ lie on lines $OA_{i}$ and $A_{i+1}A_{i+2}$ (where $A_{i+3}=A_{i}$), respectively, such that $OP_{i}HQ_{i}$ is a parallelogram. Prove that \[\frac{OQ_{1}}{OP_{1}}+\frac{OQ_{2}}{OP_{2}}+\frac{OQ_{3}}{OP_{3}}\geq 3.\]

2013 USAMO, 4

Find all real numbers $x,y,z\geq 1$ satisfying \[\min(\sqrt{x+xyz},\sqrt{y+xyz},\sqrt{z+xyz})=\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}.\]

1997 Baltic Way, 14

In the triangle $ABC$, $AC^2$ is the arithmetic mean of $BC^2$ and $AB^2$. Show that $\cot^2B\ge \cot A\cdot\cot C$.

2011 Bosnia and Herzegovina Junior BMO TST, 2

Prove inequality, with $a$ and $b$ nonnegative real numbers: $\frac{a+b}{1+a+b}\leq \frac{a}{1+a} + \frac{b}{1+b} \leq \frac{2(a+b)}{2+a+b}$

2009 Polish MO Finals, 4

Let $ x_1,x_2,..,x_n$ be non-negative numbers whose sum is $ 1$ . Show that there exist numbers $ a_1,a_2,\ldots ,a_n$ chosen from amongst $ 0,1,2,3,4$ such that $ a_1,a_2,\ldots ,a_n$ are different from $ 2,2,\ldots ,2$ and $ 2\leq a_1x_1\plus{}a_2x_2\plus{}\ldots\plus{}a_nx_n\leq 2\plus{}\frac{2}{3^n\minus{}1}$.

2017 Canadian Mathematical Olympiad Qualification, 5

Tags: inequalities
Prove for all real numbers $x, y$, $$(x^2 + 1)(y^2 + 1) + 4(x - 1)(y - 1) \geq 0.$$ Determine when equality holds.

1992 Balkan MO, 3

Let $D$, $E$, $F$ be points on the sides $BC$, $CA$, $AB$ respectively of a triangle $ABC$ (distinct from the vertices). If the quadrilateral $AFDE$ is cyclic, prove that \[ \frac{ 4 \mathcal A[DEF] }{\mathcal A[ABC] } \leq \left( \frac{EF}{AD} \right)^2 . \] [i]Greece[/i]