This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1991 Polish MO Finals, 3

If $x, y, z$ are real numbers satisfying $x^2 +y^2 +z^2 = 2$, prove the inequality \[ x + y + z \leq 2 + xyz \] When does equality occur?

1996 Romania National Olympiad, 1

Let $a$ and $b$ be real numbers such that $a + b = 2$. Show that: $$\min \{|a|,|b|\} < 1 < \max \{|a|,|b|\} \Leftrightarrow a, b \in (-3,1)$$

IV Soros Olympiad 1997 - 98 (Russia), 9.4

Find the smallest value of the expression $$16 \cdot \frac{x^3}{y}+\frac{y^3}{x}-\sqrt{xy}$$

2005 Putnam, A4

Let $H$ be an $n\times n$ matrix all of whose entries are $\pm1$ and whose rows are mutually orthogonal. Suppose $H$ has an $a\times b$ submatrix whose entries are all $1.$ Show that $ab\le n.$

1988 Polish MO Finals, 1

The real numbers $x_1, x_2, ... , x_n$ belong to the interval $(0,1)$ and satisfy $x_1 + x_2 + ... + x_n = m + r$, where $m$ is an integer and $r \in [0,1)$. Show that $x_1 ^2 + x_2 ^2 + ... + x_n ^2 \leq m + r^2$.

1998 Iran MO (2nd round), 1

If $a_1<a_2<\cdots<a_n$ be real numbers, prove that: \[ a_1a_2^4+a_2a_3^4+\cdots+a_{n-1}a_n^4+a_na_1^4\geq a_2a_1^4+a_3a_2^4+\cdots+a_na_{n-1}^4+a_1a_n^4. \]

2017 Vietnamese Southern Summer School contest, Problem 1

Let $x,y,z$ be the non-negative real numbers satisfying $xy+yz+zx\leq 1$. Prove that: $$1-xy-yz-zx\leq (6-2\sqrt{6})(1-\min\{x,y,z\}).$$

2010 Stars Of Mathematics, 3

Tags: inequalities
Find the largest constant $K>0$ such that for any $0\le k\le K$ and non-negative reals $a,b,c$ satisfying $a^2+b^2+c^2+kabc=k+3$ we have $a+b+c\le 3$. (Dan Schwarz)

2017 JBMO Shortlist, A4

Tags: inequalities
Let $x,y,z$ be positive integers such that $x\neq y\neq z \neq x$ .Prove that $$(x+y+z)(xy+yz+zx-2)\geq 9xyz.$$ When does the equality hold? [i]Proposed by Dorlir Ahmeti, Albania[/i]

2013 NIMO Problems, 7

Let $a,b,c$ be positive reals satisfying $a^3+b^3+c^3+abc=4$. Prove that \[ \frac{(5a^2+bc)^2}{(a+b)(a+c)} + \frac{(5b^2+ca)^2}{(b+c)(b+a)} + \frac{(5c^2+ab)^2}{(c+a)(c+b)} \ge \frac{(a^3+b^3+c^3+6)^2}{a+b+c} \] and determine the cases of equality. [i]Proposed by Evan Chen[/i]

2013 Albania Team Selection Test, 2

Let $a,b,c,d$ be positive real numbers such that $abcd=1$.Find with proof that $x=3 $ is the minimal value for which the following inequality holds: \[a^x+b^x+c^x+d^x\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\]

2011 Spain Mathematical Olympiad, 2

Let $a$, $b$, $c$ be positive real numbers. Prove that \[ \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt{\frac{ab+bc+ca}{a^2+b^2+c^2}}\ge\frac52\] and determine when equality holds.

2023 ITAMO, 5

Let $a, b, c$ be reals satisfying $a^2+b^2+c^2=6$. Find the maximal values of the expressions a) $(a-b)^2+(b-c)^2+(c-a)^2$; b) $(a-b)^2 \cdot (b-c)^2 \cdot (c-a)^2$. In both cases, describe all triples for which equality holds.

2023 China Team Selection Test, P11

Let $n\in\mathbb N_+.$ For $1\leq i,j,k\leq n,a_{ijk}\in\{ -1,1\} .$ Prove that: $\exists x_1,x_2,\cdots ,x_n,y_1,y_2,\cdots ,y_n,z_1,z_2,\cdots ,z_n\in \{-1,1\} ,$ satisfy $$\left| \sum\limits_{i=1}^n\sum\limits_{j=1}^n\sum\limits_{k=1}^na_{ijk}x_iy_jz_k\right| >\frac {n^2}3.$$ [i]Created by Yu Deng[/i]

1987 IMO Shortlist, 15

Let $x_1,x_2,\ldots,x_n$ be real numbers satisfying $x_1^2+x_2^2+\ldots+x_n^2=1$. Prove that for every integer $k\ge2$ there are integers $a_1,a_2,\ldots,a_n$, not all zero, such that $|a_i|\le k-1$ for all $i$, and $|a_1x_1+a_2x_2+\ldots+a_nx_n|\le{(k-1)\sqrt n\over k^n-1}$. [i](IMO Problem 3)[/i] [i]Proposed by Germany, FR[/i]

1966 All Russian Mathematical Olympiad, 073

a) Points $B$ and $C$ are inside the segment $[AD]$. $|AB|=|CD|$. Prove that for all of the points P on the plane holds inequality $$|PA|+|PD|>|PB|+|PC|$$ b) Given four points $A,B,C,D$ on the plane. For all of the points $P$ on the plane holds inequality $$|PA|+|PD| > |PB|+|PC|.$$ Prove that points $B$ and C are inside the segment $[AD]$ and$ |AB|=|CD|$.

2009 China Team Selection Test, 3

Let $ x_{1},x_{2},\cdots,x_{m},y_{1},y_{2},\cdots,y_{n}$ be positive real numbers. Denote by $ X \equal{} \sum_{i \equal{} 1}^{m}x,Y \equal{} \sum_{j \equal{} 1}^{n}y.$ Prove that $ 2XY\sum_{i \equal{} 1}^{m}\sum_{j \equal{} 1}^{n}|x_{i} \minus{} y_{j}|\ge X^2\sum_{j \equal{} 1}^{n}\sum_{l \equal{} 1}^{n}|y_{i} \minus{} y_{l}| \plus{} Y^2\sum_{i \equal{} 1}^{m}\sum_{k \equal{} 1}^{m}|x_{i} \minus{} x_{k}|$

2007 Germany Team Selection Test, 1

The sequence of real numbers $a_0,a_1,a_2,\ldots$ is defined recursively by \[a_0=-1,\qquad\sum_{k=0}^n\dfrac{a_{n-k}}{k+1}=0\quad\text{for}\quad n\geq 1.\]Show that $ a_{n} > 0$ for all $ n\geq 1$. [i]Proposed by Mariusz Skalba, Poland[/i]

2013 District Olympiad, 1

a) Prove that, whatever the real number x would be, the following inequality takes place ${{x}^{4}}-{{x}^{3}}-x+1\ge 0.$ b) Solve the following system in the set of real numbers: ${{x}_{1}}+{{x}_{2}}+{{x}_{3}}=3,x_{1}^{3}+x_{2}^{3}+x_{3}^{3}=x_{1}^{4}+x_{2}^{4}+x_{3}^{4}$. The Mathematical Gazette

2012 Balkan MO, 3

Let $n$ be a positive integer. Let $P_n=\{2^n,2^{n-1}\cdot 3, 2^{n-2}\cdot 3^2, \dots, 3^n \}.$ For each subset $X$ of $P_n$, we write $S_X$ for the sum of all elements of $X$, with the convention that $S_{\emptyset}=0$ where $\emptyset$ is the empty set. Suppose that $y$ is a real number with $0 \leq y \leq 3^{n+1}-2^{n+1}.$ Prove that there is a subset $Y$ of $P_n$ such that $0 \leq y-S_Y < 2^n$

2018 Cyprus IMO TST, Source

[url=https://artofproblemsolving.com/community/c677808][b]Cyprus IMO TST 2018[/b][/url] [url=https://artofproblemsolving.com/community/c6h1666662p10591751][b]Problem 1.[/b][/url] Determine all integers $n \geq 2$ for which the number $11111$ in base $n$ is a perfect square. [url=https://artofproblemsolving.com/community/c6h1666663p10591753][b]Problem 2.[/b][/url] Consider a trapezium $AB \Gamma \Delta$, where $A\Delta \parallel B\Gamma$ and $\measuredangle A = 120^{\circ}$. Let $E$ be the midpoint of $AB$ and let $O_1$ and $O_2$ be the circumcenters of triangles $AE \Delta$ and $BE\Gamma$, respectively. Prove that the area of the trapezium is equal to six time the area of the triangle $O_1 E O_2$. [url=https://artofproblemsolving.com/community/c6h1666660p10591747][b]Problem 3.[/b][/url] Find all triples $(\alpha, \beta, \gamma)$ of positive real numbers for which the expression $$K = \frac{\alpha+3 \gamma}{\alpha + 2\beta + \gamma} + \frac{4\beta}{\alpha+\beta+2\gamma} - \frac{8 \gamma}{\alpha+ \beta + 3\gamma}$$obtains its minimum value. [url=https://artofproblemsolving.com/community/c6h1666661p10591749][b]Problem 4.[/b][/url] Let $\Lambda= \{1, 2, \ldots, 2v-1,2v\}$ and $P=\{\alpha_1, \alpha_2, \ldots, \alpha_{2v-1}, \alpha_{2v}\}$ be a permutation of the elements of $\Lambda$. (a) Prove that $$\sum_{i=1}^v \alpha_{2i-1}\alpha_{2i} \leq \sum_{i=1}^v (2i-1)2i.$$(b) Determine the largest positive integer $m$ such that we can partition the $m\times m$ square into $7$ rectangles for which every pair of them has no common interior points and their lengths and widths form the following sequence: $$1,2,3,4,5,6,7,8,9,10,11,12,13,14.$$

1987 Flanders Math Olympiad, 4

Show that for $p>1$ we have \[\lim_{n\rightarrow+\infty}\frac{1^p+2^p+...+(n-1)^p+n^p+(n-1)^p+...+2^p+1^p}{n^2} = +\infty\] Find the limit if $p=1$.

2019 Canada National Olympiad, 4

Prove that for $n>1$ and real numbers $a_0,a_1,\dots, a_n,k$ with $a_1=a_{n-1}=0$, \[|a_0|-|a_n|\leq \sum_{i=0}^{n-2}|a_i-ka_{i+1}-a_{i+2}|.\]

1998 Hungary-Israel Binational, 2

A triangle ABC is inscribed in a circle with center $ O$ and radius $ R$. If the inradii of the triangles $ OBC, OCA, OAB$ are $ r_{1}, r_{2}, r_{3}$ , respectively, prove that $ \frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}\geq\frac{4\sqrt{3}+6}{R}.$

1990 All Soviet Union Mathematical Olympiad, 511

Show that $x^4 > x - \frac12$ for all real $x$.