This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 592

1976 Vietnam National Olympiad, 6

Show that $\frac{1}{x_1^n} + \frac{1}{x_2^n} +...+ \frac{1}{x_k^n} \ge k^{n+1}$ for positive real numbers $x_i $ with sum $1$.

1969 IMO, 6

Given real numbers $x_1,x_2,y_1,y_2,z_1,z_2$ satisfying $x_1>0,x_2>0,x_1y_1>z_1^2$, and $x_2y_2>z_2^2$, prove that: \[ {8\over(x_1+x_2)(y_1+y_2)-(z_1+z_2)^2}\le{1\over x_1y_1-z_1^2}+{1\over x_2y_2-z_2^2}. \] Give necessary and sufficient conditions for equality.

2000 AMC 10, 22

One morning each member of Angela's family drank an $ 8$-ounce mixture of coffee with milk. The amounts of coffee and milk varied from cup to cup, but were never zero. Angela drank a quarter of the total amount of milk and a sixth of the total amount of coffee. How many people are in the family? $ \textbf{(A)}\ 3\qquad\textbf{(B)}\ 4 \qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 6 \qquad\textbf{(E)}\ 7$

1970 IMO Shortlist, 9

Let $u_1, u_2, \ldots, u_n, v_1, v_2, \ldots, v_n$ be real numbers. Prove that \[1+ \sum_{i=1}^n (u_i+v_i)^2 \leq \frac 43 \Biggr( 1+ \sum_{i=1}^n u_i^2 \Biggl) \Biggr( 1+ \sum_{i=1}^n v_i^2 \Biggl) .\]

2012 Greece Team Selection Test, 3

Let $a,b,c$ be positive real numbers satisfying $a+b+c=3$.Prove that $\sum_{sym} \frac{a^{2}}{(b+c)^{3}}\geq \frac{3}{8}$

2008 Korean National Olympiad, 2

We have $x_i >i$ for all $1 \le i \le n$. Find the minimum value of $\frac{(\sum_{i=1}^n x_i)^2}{\sum_{i=1}^n \sqrt{x^2_i - i^2}}$

1977 IMO Longlists, 20

Let $a,b,A,B$ be given reals. We consider the function defined by \[ f(x) = 1 - a \cdot \cos(x) - b \cdot \sin(x) - A \cdot \cos(2x) - B \cdot \sin(2x). \] Prove that if for any real number $x$ we have $f(x) \geq 0$ then $a^2 + b^2 \leq 2$ and $A^2 + B^2 \leq 1.$

1971 IMO Shortlist, 17

Prove the inequality \[ \frac{a_1+ a_3}{a_1 + a_2} + \frac{a_2 + a_4}{a_2 + a_3} + \frac{a_3 + a_1}{a_3 + a_4} + \frac{a_4 + a_2}{a_4 + a_1} \geq 4, \] where $a_i > 0, i = 1, 2, 3, 4.$

2021 Bulgaria EGMO TST, 3

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$ [i]Israel[/i]

2020 International Zhautykov Olympiad, 3

Given convex hexagon $ABCDEF$, inscribed in the circle. Prove that $AC*BD*DE*CE*EA*FB \geq 27 AB * BC * CD * DE * EF * FA$

2012 Korea Junior Math Olympiad, 1

Prove the following inequality where positive reals $a$, $b$, $c$ satisfies $ab+bc+ca=1$. \[ \frac{a+b}{\sqrt{ab(1-ab)}} + \frac{b+c}{\sqrt{bc(1-bc)}} + \frac{c+a}{\sqrt{ca(1-ca)}} \le \frac{\sqrt{2}}{abc} \]

2022 Iran MO (3rd Round), 6

Prove that among any $9$ distinct real numbers, there exist $4$ distinct numbers $a,b,c,d$ such that $$(ac+bd)^2\ge\frac{9}{10}(a^2+b^2)(c^2+d^2)$$

2013 Bosnia and Herzegovina Junior BMO TST, 2

Let $a$, $b$ and $c$ be positive real numbers such that $a^2+b^2+c^2=3$. Prove the following inequality: $\frac{a}{3c(a^2-ab+b^2)} + \frac{b}{3a(b^2-bc+c^2)} + \frac{c}{3b(c^2-ca+a^2)} \leq \frac{1}{abc}$

1971 IMO Shortlist, 11

The matrix \[A=\begin{pmatrix} a_{11} & \ldots & a_{1n} \\ \vdots & \ldots & \vdots \\ a_{n1} & \ldots & a_{nn} \end{pmatrix}\] satisfies the inequality $\sum_{j=1}^n |a_{j1}x_1 + \cdots+ a_{jn}x_n| \leq M$ for each choice of numbers $x_i$ equal to $\pm 1$. Show that \[|a_{11} + a_{22} + \cdots+ a_{nn}| \leq M.\]

2021 Olympic Revenge, 1

Let $a$, $b$, $c$, $k$ be positive reals such that $ab+bc+ca \leq 1$ and $0 < k \leq \frac{9}{2}$. Prove that: \[\sqrt[3]{ \frac{k}{a} + (9-3k)b} + \sqrt[3]{\frac{k}{b} + (9-3k)c} + \sqrt[3]{\frac{k}{c} + (9-3k)a } \leq \frac{1}{abc}.\] [i]Proposed by Zhang Yanzong and Song Qing[/i]

2004 Bosnia and Herzegovina Team Selection Test, 3

Let $a$, $b$ and $c$ be positive real numbers such that $abc=1$. Prove the inequality: $\frac{ab}{a^5+b^5+ab} +\frac{bc}{b^5+c^5+bc}+\frac{ac}{c^5+a^5+ac}\leq 1$

1982 IMO Longlists, 53

Consider infinite sequences $\{x_n\}$ of positive reals such that $x_0=1$ and $x_0\ge x_1\ge x_2\ge\ldots$. [b]a)[/b] Prove that for every such sequence there is an $n\ge1$ such that: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}\ge3.999. \] [b]b)[/b] Find such a sequence such that for all $n$: \[ {x_0^2\over x_1}+{x_1^2\over x_2}+\ldots+{x_{n-1}^2\over x_n}<4. \]

2000 Bosnia and Herzegovina Team Selection Test, 4

Prove that for all positive real $a$, $b$ and $c$ holds: $$ \frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab} \leq 1 \leq \frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}$$

2002 Iran MO (3rd Round), 16

For positive $a,b,c$, \[a^{2}+b^{2}+c^{2}+abc=4\] Prove $a+b+c \leq3$

2019 JBMO Shortlist, A2

Let $a, b, c $ be positive real numbers such that $abc = \frac {2} {3}. $ Prove that: $$\frac {ab}{a + b} + \frac {bc} {b + c} + \frac {ca} {c + a} \geqslant \frac {a+b+c} {a^3+b ^ 3 + c ^ 3}.$$

2021 China Team Selection Test, 4

Suppose $x_1,x_2,...,x_{60}\in [-1,1]$ , find the maximum of $$ \sum_{i=1}^{60}x_i^2(x_{i+1}-x_{i-1}),$$ where $x_{i+60}=x_i$.

2024 Junior Balkan Team Selection Tests - Romania, P1

For positive real numbers $x,y,z$ with $xy+yz+zx=1$, prove that $$\frac{2}{xyz}+9xyz \geq 7(x+y+z)$$

2018 IFYM, Sozopol, 1

Tags: algebra , set , inequality
$A = \{a_1, a_2, . . . , a_k\}$ is a set of positive integers for which the sum of some (we can have only one number too) different numbers from the set is equal to a different number i.e. there $2^k - 1$ different sums of different numbers from $A$. Prove that the following inequality holds: $\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_k}<2$

1975 IMO Shortlist, 2

We consider two sequences of real numbers $x_{1} \geq x_{2} \geq \ldots \geq x_{n}$ and $\ y_{1} \geq y_{2} \geq \ldots \geq y_{n}.$ Let $z_{1}, z_{2}, .\ldots, z_{n}$ be a permutation of the numbers $y_{1}, y_{2}, \ldots, y_{n}.$ Prove that $\sum \limits_{i=1}^{n} ( x_{i} -\ y_{i} )^{2} \leq \sum \limits_{i=1}^{n}$ $( x_{i} - z_{i})^{2}.$

2020 Australian Maths Olympiad, 1

Determine all pairs $(a,b)$ of non-negative integers such that $$ \frac{a+b}{2}-\sqrt{ab}=1.$$