This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 288

1998 Singapore Senior Math Olympiad, 1

Prove that $1998! \left( 1+ \frac12 + \frac13 +...+\frac{1}{1998}\right)$ is an integer divisible by $1999$.

1999 Ukraine Team Selection Test, 2

Tags: algebra , integer
Show that there exist integers $j,k,l,m,n$ greater than $100$ such that $j^2 +k^2 +l^2 +m^2 +n^2 = jklmn-12$.

2013 Singapore Junior Math Olympiad, 4

Let $a,b,$ be positive integers and $a>b>2$. Prove that $\frac{2^a+1}{2^b-1}$ is never an integer

2013 Brazil Team Selection Test, 1

Tags: geometry , integer
Find a triangle $ABC$ with a point $D$ on side $AB$ such that the measures of $AB, BC, CA$ and $CD$ are all integers and $\frac{AD}{DB}=\frac{9}{7}$, or prove that such a triangle does not exist.

2012 Thailand Mathematical Olympiad, 3

Let $m, n > 1$ be coprime odd integers. Show that $$\big \lfloor \frac{m^{\phi (n)+1} + n^{\phi (m)+1}}{mn} \rfloor$$ is an even integer, where $\phi$ is Euler’s totient function.

2025 Greece National Olympiad, 1

Let $P(x)=x^4+5x^3+mx^2+5nx+4$ have $2$ distinct real roots, which sum up to $-5$. If $m,n \in \mathbb {Z_+}$, find the values of $m,n$ and their corresponding roots.

1998 Austrian-Polish Competition, 5

Determine all pairs $(a, b)$ of positive integers for which the equation $x^3 - 17x^2 + ax - b^2 = 0$ has three integer roots (not necessarily different).

Indonesia MO Shortlist - geometry, g8

Prove that there is only one triangle whose sides are consecutive natural numbers and one of the angles is twice the other angle.

1997 Dutch Mathematical Olympiad, 3

a. View the second-degree quadratic equation $x^2+? x +? = 0$ Two players successively put an integer each at the location of a question mark. Show that the second player can always ensure that the quadratic gets two integer solutions. Note: we say that the quadratic also has two integer solutions, even when they are equal (for example if they are both equal to $3$). b.View the third-degree equation $x^3 +? x^2 +? x +? = 0$ Three players successively put an integer each at the location of a question mark. The equation appears to have three integer (possibly again the same) solutions. It is given that two players each put a $3$ in the place of a question mark. What number did the third player put? Determine that number and the place where it is placed and prove that only one number is possible.

2016 Germany Team Selection Test, 3

In the beginning there are $100$ integers in a row on the blackboard. Kain and Abel then play the following game: A [i]move[/i] consists in Kain choosing a chain of consecutive numbers; the length of the chain can be any of the numbers $1,2,\dots,100$ and in particular it is allowed that Kain only chooses a single number. After Kain has chosen his chain of numbers, Abel has to decide whether he wants to add $1$ to each of the chosen numbers or instead subtract $1$ from of the numbers. After that the next move begins, and so on. If there are at least $98$ numbers on the blackboard that are divisible by $4$ after a move, then Kain has won. Prove that Kain can force a win in a finite number of moves.

1977 Bundeswettbewerb Mathematik, 3

Show that there are infinitely many positive integers $a$ that cannot be written as $a = a_{1}^{6}+ a_{2}^{6} + \ldots + a_{7}^{6},$ where the $a_i$ are positive integers. State and prove a generalization.

2019 District Olympiad, 3

Consider the sets $M = \{0,1,2,, 2019\}$ and $$A=\left\{ x\in M\,\, | \frac{x^3-x}{24} \in N\right\} $$ a) How many elements does the set $A$ have? b) Determine the smallest natural number $n$, $n \ge 2$, which has the property that any $n$-element subset of the set $A $contains two distinct elements whose difference is divisible by $40$.

2009 Bosnia And Herzegovina - Regional Olympiad, 1

Find all triplets of integers $(x,y,z)$ such that $$xy(x^2-y^2)+yz(y^2-z^2)+zx(z^2-x^2)=1$$

1954 Putnam, A7

Prove that there are no integers $x$ and $y$ for which $$x^2 +3xy-2y^2 =122.$$

1992 Swedish Mathematical Competition, 1

Is $\frac{19^{92} - 91^{29}}{90}$ an integer?

2003 Dutch Mathematical Olympiad, 1

A Pythagorean triangle is a right triangle whose three sides are integers. The best known example is the triangle with rectangular sides $3$ and $4$ and hypotenuse $5$. Determine all Pythagorean triangles whose area is twice the perimeter.

2004 German National Olympiad, 4

For a positive integer $n,$ let $a_n$ be the integer closest to $\sqrt{n}.$ Compute $$ \frac{1}{a_1 } + \frac{1}{a_2 }+ \cdots + \frac{1}{a_{2004}}.$$

2017 Bundeswettbewerb Mathematik, 4

The sequence $a_0,a_1,a_2,\dots$ is recursively defined by \[ a_0 = 1 \quad \text{and} \quad a_n = a_{n-1} \cdot \left(4-\frac{2}{n} \right) \quad \text{for } n \geq 1. \] Prove for each integer $n \geq 1$: (a) The number $a_n$ is a positive integer. (b) Each prime $p$ with $n < p \leq 2n$ is a divisor of $a_n$. (c) If $n$ is a prime, then $a_n-2$ is divisible by $n$.

2009 Sharygin Geometry Olympiad, 7

Tags: integer , vector , geometry
Given points $O, A_1, A_2, ..., A_n$ on the plane. For any two of these points the square of distance between them is natural number. Prove that there exist two vectors $\vec{x}$ and $\vec{y}$, such that for any point $A_i$, $\vec{OA_i }= k\vec{x}+l \vec{y}$, where $k$ and $l$ are some integer numbers. (A.Glazyrin)

2016 Saint Petersburg Mathematical Olympiad, 7

A polynomial $P(x)$ with integer coefficients and a positive integer $a>1$, are such that for all integers $x$, there exists an integer $z$ such that $aP(x)=P(z)$. Find all such pairs of $(P(x),a)$.

1996 Dutch Mathematical Olympiad, 1

How many different (non similar) triangles are there whose angles have an integer number of degrees?

2015 Costa Rica - Final Round, 4

Find all triples of integers $(x, y, z)$ not zero and relative primes in pairs such that $\frac{(y+z-x)^2}{4x}$, $\frac{(z+x-y)^2}{4y}$ and $\frac{(x+y-z)^2}{4z}$ are all integers.

2024 AMC 10, 7

Tags: integer
The product of three integers is $60$. What is the least possible positive sum of the three integers? $\textbf{(A) } 2 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 5 \qquad \textbf{(D) } 6 \qquad \textbf{(E) } 13$

2014 Irish Math Olympiad, 8

(a) Let $a_0, a_1,a_2$ be real numbers and consider the polynomial $P(x) = a_0 + a_1x + a_2x^2$ . Assume that $P(-1), P(0)$ and $P(1)$ are integers. Prove that $P(n)$ is an integer for all integers $n$. (b) Let $a_0,a_1, a_2, a_3$ be real numbers and consider the polynomial $Q(x) = a0 + a_1x + a_2x^2 + a_3x^3 $. Assume that there exists an integer $i$ such that $Q(i),Q(i+1),Q(i+2)$ and $Q(i+3)$ are integers. Prove that $Q(n)$ is an integer for all integers $n$.

1997 Abels Math Contest (Norwegian MO), 4

Let $p(x)$ be a polynomial with integer coefficients. Suppose that there exist different integers $a$ and $b$ such that $f(a) = b$ and $f(b) = a$. Show that the equation $f(x) = x$ has at most one integer solution.