Found problems: 1687
2001 Junior Balkan Team Selection Tests - Romania, 2
Find all $n\in\mathbb{Z}$ such that the number $\sqrt{\frac{4n-2}{n+5}}$ is rational.
2015 Romania National Olympiad, 4
Find all non-constant polynoms $ f\in\mathbb{Q} [X] $ that don't have any real roots in the interval $ [0,1] $ and for which there exists a function $ \xi :[0,1]\longrightarrow\mathbb{Q} [X]\times\mathbb{Q} [X], \xi (x):=\left( g_x,h_x \right) $ such that $ h_x(x)\neq 0 $ and $ \int_0^x \frac{dt}{f(t)} =\frac{g_x(x)}{h_x(x)} , $ for all $ x\in [0,1] . $
2007 Today's Calculation Of Integral, 214
Find the area of the region surrounded by the two curves $ y=\sqrt{x},\ \sqrt{x}+\sqrt{y}=1$ and the $ x$ axis.
2009 Today's Calculation Of Integral, 501
Find the volume of the uion $ A\cup B\cup C$ of the three subsets $ A,\ B,\ C$ in $ xyz$ space such that:
\[ A\equal{}\{(x,\ y,\ z)\ |\ |x|\leq 1,\ y^2\plus{}z^2\leq 1\}\]
\[ B\equal{}\{(x,\ y,\ z)\ |\ |y|\leq 1,\ z^2\plus{}x^2\leq 1\}\]
\[ C\equal{}\{(x,\ y,\ z)\ |\ |z|\leq 1,\ x^2\plus{}y^2\leq 1\}\]
2010 Today's Calculation Of Integral, 663
Given are the curve $y=x^2+x-2$ and a curve which is obtained by tranfering the curve symmetric with respect to the point $(p,\ 2p)$. Let $p$ change in such a way that these two curves intersects, find the maximum area of the part bounded by these curves.
[i]1978 Nagasaki University entrance exam/Economics[/i]
2007 Today's Calculation Of Integral, 196
Calculate
\[\frac{\int_{0}^{\pi}e^{-x}\sin^{n}x\ dx}{\int_{0}^{\pi}e^{x}\sin^{n}x \ dx}\ (n=1,\ 2,\ \cdots). \]
2013 VTRMC, Problem 1
Let $I=3\sqrt2\int^x_0\frac{\sqrt{1+\cos t}}{17-8\cos t}dt$. If $0<x<\pi$ and $\tan I=\frac2{\sqrt3}$, what is $x$?
2009 Today's Calculation Of Integral, 430
For a natural number $ n$, let $ a_n\equal{}\int_0^{\frac{\pi}{4}} (\tan x)^{2n}dx$.
Answer the following questions.
(1) Find $ a_1$.
(2) Express $ a_{n\plus{}1}$ in terms of $ a_n$.
(3) Find $ \lim_{n\to\infty} a_n$.
(4) Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \frac{(\minus{}1)^{k\plus{}1}}{2k\minus{}1}$.
2007 Today's Calculation Of Integral, 169
(1) Let $f(x)$ be the differentiable and increasing function such that $f(0)=0.$Prove that $\int_{0}^{1}f(x)f'(x)dx\geq \frac{1}{2}\left(\int_{0}^{1}f(x)dx\right)^{2}.$
(2) $g_{n}(x)=x^{2n+1}+a_{n}x+b_{n}\ (n=1,\ 2,\ 3,\ \cdots)$ satisfies $\int_{-1}^{1}(px+q)g_{n}(x)dx=0$ for all linear equations $px+q.$
Find $a_{n},\ b_{n}.$
2008 USAPhO, 1
A charged particle with charge $q$ and mass $m$ is given an initial kinetic energy $K_0$ at the middle of a uniformly charged spherical region of total charge $Q$ and radius $R$. $q$ and $Q$ have opposite signs. The spherically charged region is not free to move. Throughout this problem consider electrostatic forces only.
[asy]
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
size(100);
filldraw(circle((0,0),1),gray(.8));
draw((0,0)--(0.5,sqrt(3)/2),EndArrow);
label("$R$",(0.25,sqrt(3)/4),SE);
[/asy]
(a) Find the value of $K_0$ such that the particle will just reach the boundary of the spherically charged region.
(b) How much time does it take for the particle to reach the boundary of the region if it starts with the kinetic energy $K_0$ found in part (a)?
2005 Today's Calculation Of Integral, 77
Find the area of the part enclosed by the following curve.
\[x^2+2axy+y^2=1\ (-1<a<1)\]
2009 Today's Calculation Of Integral, 455
(1) Evaluate $ \int_1^{3\sqrt{3}} \left(\frac{1}{\sqrt[3]{x^2}}\minus{}\frac{1}{1\plus{}\sqrt[3]{x^2}}\right)\ dx.$
(2) Find the positive real numbers $ a,\ b$ such that for $ t>1,$ $ \lim_{t\rightarrow \infty} \left(\int_1^t \frac{1}{1\plus{}\sqrt[3]{x^2}}\ dx\minus{}at^b\right)$ converges.
2005 Today's Calculation Of Integral, 52
Evaluate
\[\lim_{n\to\infty} \sum_{k=1}^n \frac{1}{n+k\sqrt{-1}}\]
2009 Today's Calculation Of Integral, 450
Let $ a,\ b$ be postive real numbers. Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \frac{n}{(k\plus{}an)(k\plus{}bn)}.$
2019 Korea USCM, 3
Two vector fields $\mathbf{F},\mathbf{G}$ are defined on a three dimensional region $W=\{(x,y,z)\in\mathbb{R}^3 : x^2+y^2\leq 1, |z|\leq 1\}$.
$$\mathbf{F}(x,y,z) = (\sin xy, \sin yz, 0),\quad \mathbf{G} (x,y,z) = (e^{x^2+y^2+z^2}, \cos xz, 0)$$
Evaluate the following integral.
\[\iiint_{W} (\mathbf{G}\cdot \text{curl}(\mathbf{F}) - \mathbf{F}\cdot \text{curl}(\mathbf{G})) dV\]
1976 IMO Longlists, 30
Prove that if $P(x) = (x-a)^kQ(x)$, where $k$ is a positive integer, $a$ is a nonzero real number, $Q(x)$ is a nonzero polynomial, then $P(x)$ has at least $k + 1$ nonzero coefficients.
2011 Today's Calculation Of Integral, 752
Find $f_n(x)$ such that $f_1(x)=x,\ f_n(x)=\int_0^x tf_{n-1}(x-t)dt\ (n=2,\ 3,\ \cdots).$
2012 Today's Calculation Of Integral, 778
In the $xyz$ space with the origin $O$, Let $K_1$ be the surface and inner part of the sphere centered on the point $(1,\ 0,\ 0)$ with radius 2 and let $K_2$ be the surface and inner part of the sphere centered on the point $(-1,\ 0,\ 0)$ with radius 2. For three points $P,\ Q,\ R$ in the space, consider points $X,\ Y$ defined by
\[\overrightarrow{OX}=\overrightarrow{OP}+\overrightarrow{OQ},\ \overrightarrow{OY}=\frac 13(\overrightarrow{OP}+\overrightarrow{OQ}+\overrightarrow{OR}).\]
(1) When $P,\ Q$ move every cranny in $K_1,\ K_2$ respectively, find the volume of the solid generated by the whole points of the point $X$.
(2) Find the volume of the solid generated by the whole points of the point $R$ for which for any $P$ belonging to $K_1$ and any $Q$ belonging to $K_2$, $Y$ belongs to $K_1$.
(3) Find the volume of the solid generated by the whole points of the point $R$ for which for any $P$ belonging to $K_1$ and any $Q$ belonging to $K_2$, $Y$ belongs to $K_1\cup K_2$.
2011 ISI B.Stat Entrance Exam, 8
Let
\[I_n =\int_{0}^{n\pi} \frac{\sin x}{1+x} \, dx , \ \ \ \ n=1,2,3,4\]
Arrange $I_1, I_2, I_3, I_4$ in increasing order of magnitude. Justify your answer.
2003 AMC 10, 19
A semicircle of diameter $ 1$ sits at the top of a semicircle of diameter $ 2$, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a lune. Determine the area of this lune.
[asy]unitsize(2.5cm);
defaultpen(fontsize(10pt)+linewidth(.8pt));
filldraw(Circle((0,.866),.5),grey,black);
label("1",(0,.866),S);
filldraw(Circle((0,0),1),white,black);
draw((-.5,.866)--(.5,.866),linetype("4 4"));
clip((-1,0)--(1,0)--(1,2)--(-1,2)--cycle);
draw((-1,0)--(1,0));
label("2",(0,0),S);[/asy]$ \textbf{(A)}\ \frac {1}{6}\pi \minus{} \frac {\sqrt {3}}{4} \qquad \textbf{(B)}\ \frac {\sqrt {3}}{4} \minus{} \frac {1}{12}\pi \qquad \textbf{(C)}\ \frac {\sqrt {3}}{4} \minus{} \frac {1}{24}\pi\qquad\textbf{(D)}\ \frac {\sqrt {3}}{4} \plus{} \frac {1}{24}\pi$
$ \textbf{(E)}\ \frac {\sqrt {3}}{4} \plus{} \frac {1}{12}\pi$
2007 Putnam, 3
Let $ x_0 \equal{} 1$ and for $ n\ge0,$ let $ x_{n \plus{} 1} \equal{} 3x_n \plus{} \left\lfloor x_n\sqrt {5}\right\rfloor.$ In particular, $ x_1 \equal{} 5,\ x_2 \equal{} 26,\ x_3 \equal{} 136,\ x_4 \equal{} 712.$ Find a closed-form expression for $ x_{2007}.$ ($ \lfloor a\rfloor$ means the largest integer $ \le a.$)
2004 USAMO, 2
Suppose $a_1, \dots, a_n$ are integers whose greatest common divisor is 1. Let $S$ be a set of integers with the following properties:
(a) For $i=1, \dots, n$, $a_i \in S$.
(b) For $i,j = 1, \dots, n$ (not necessarily distinct), $a_i - a_j \in S$.
(c) For any integers $x,y \in S$, if $x+y \in S$, then $x-y \in S$.
Prove that $S$ must be equal to the set of all integers.
2020 Jozsef Wildt International Math Competition, W3
Let $n \geq 2$ be an integer. Calculate$$\int \limits_{0}^{\frac{\pi}{2}}\frac{\sin x}{\sin^{2n-1}x+\cos^{2n-1}x}dx$$
2009 Today's Calculation Of Integral, 449
Evaluate $ \sum_{k\equal{}1}^n \int_0^{\pi} (\sin x\minus{}\cos kx)^2dx.$
2008 Putnam, A4
Define $ f: \mathbb{R}\to\mathbb{R}$ by
\[ f(x)\equal{}\begin{cases}x&\text{if }x\le e\\ xf(\ln x)&\text{if }x>e\end{cases}\]
Does $ \displaystyle\sum_{n\equal{}1}^{\infty}\frac1{f(n)}$ converge?